Products, services and solutions

General information
- Description ... 5
- Hambr products .. 6
- Joist components 6
- Important notes for engineers 7
 - Gravity loads ... 7
 - Reaction on support elements 7
 - Vibration .. 7
 - Wire mesh .. 7
 - Deck fasteners ... 7
 - Precaution for composite action 7
- Installation .. 7
- Steel ... 8
- Design standards 8
- Quality assurance 8
- Approvals .. 8

Hambr D500 Composite Floor System
- Joist members .. 9
- Joist shoe ... 9
- Span and depth .. 10
- Joist spacing ... 10
- Formworks .. 10
- Lateral stability 11
- Maximum duct opening 12
- Slab ... 13
- Accessories .. 13
- Mini-joist .. 13
- Fire rating ... 14
- Acoustical properties 15
 - Sound transmission class (STC) 15
 - Impact insulation class (IIC) 15
- Acoustical performances 15
- Acoustical associations and consultants 16
- Selection tables .. 17
 - D500 Joist span tables 17
 - D500 Mini-joist span tables 22
 - Slab tables for D500 product 22
- Design principles 25
 - Non-composite design 25
 - Composite design 27
- Diaphragm .. 39
 - The Hambr slab as a diaphragm 39
- Engineering typical details 43
 - D500 (H series) 43
 - D500 on girder .. 60

Hambr MD2000 Composite Floor System
- Joist members .. 72
- Joist shoe ... 72
- Span and depth .. 73
- Joist spacing ... 73
- Maximum end reaction 73
- Formworks .. 73
- Lateral stability 74
- Maximum duct opening 75
- Slab ... 76
- Accessories .. 76
- Mini-joist .. 76
- Sound transmission class (STC) 78
- Impact insulation class (IIC) 78
- Acoustical performances 78
- Acoustical associations and consultants 79
- Selection tables .. 79
 - MD2000 Joist span tables 79
 - MD2000 Mini-joist span tables 85
 - Slab tables for MD2000 product 85
- Design principles 88
 - Non-composite design 88
 - Composite design 90
- Diaphragm .. 102
 - The Hambr slab as a diaphragm 102
- Engineering typical details 106
 - MD2000 (MDH series) 106
 - MD2000 on girder 120
- Architectural typical details 123
 - MD2000 (MDH series) 123

Hambr Composite Girder
- Product information and benefits 132
- Main components 133
- Shear connector 133
- Span and depth .. 133

Checklist
- Joist design essential information checklist 134

Hambr products are sold in Canada by Canam Buildings and Structures Inc. and in the United States by Canam Steel Corporation or through their respective agents, distributors or representatives in those countries. BuildMaster, Canam, Hambr, Murox, as well as all logos identifying the activities of Canam Buildings and Structures Inc., are trademarks of Canam Buildings and Structures Inc.
Canam Buildings and Structures Inc. (“Canam”) specializes in the design and fabrication of steel joists and joist girders, steel deck, purlins and girts, welded wide-flange shapes (WWF), load-bearing steel stud walls, as well as the Murox prefabricated building system, Econox relocatable buildings and Hambro composite floor system. It offers value-added engineering and drafting services, architectural flexibility and customized solutions and services.

What is more, Canam has redefined building design and construction by adopting the systematic BuildMaster approach that can reduce installation time of building structures by up to 20%.

Because product quality, site supervision and deadlines are critical aspects for any project, our reliability makes life easier for our customers. Furthermore, a rigorous site management process has been developed to deliver projects on time. Advanced equipment, well-trained staff and quality products are what set us apart. Regardless of the project, Canam will meet your needs, while ensuring that current building code requirements are met.

Our exceptional service also means just-in-time delivery at a time that works for you. To make sure we eliminate delays, our fleet of trucks delivers your product on time, regardless of your location and schedule. Depending on the region and delivery point, Canam can transport parts in sizes up to 16 ft. (4.9 m) wide by 120 ft. (36.5 m) long. Canam is one of the largest structural steel and steel joists manufacturers in North America.

DISCLAIMER

This manual has been developed to assist you in understanding the Hambro composite floor system, and for you to have at hand the information necessary for the most efficient and economical use of our Hambro products.

Suggested detailing and design information throughout this manual illustrates methods of use. To achieve maximum economy and to save valuable time we suggest you contact your local Hambro representative. He/she is qualified and prepared to assist you in the selection of a Hambro system best suited to your project’s requirements.

For any questions concerning the product, to request a quote, a visit from one of our representatives or for documentation, please contact us.

The information contained herein should not be used without examination and verification of its applications by a certified professional.

CAUTIONARY STATEMENT

Although every effort was made to ensure that the information contained in this catalog is factual and that the numerical values presented herein are consistent with applicable standards, Canam does not assume any responsibility whatsoever for errors or oversights that may result from the use or interpretation of this data.

Anyone making use of this catalog assumes all liability arising from such use. All comments and suggestions for improvements to this publication are greatly appreciated and will receive full consideration in future editions.
DESCRIPTION

The Hambro composite floor system consists of open web steel joist with a top chord embedded in a reinforced concrete slab. The combination of the joist and the slab performs as a "T" shaped beam. The concrete slab is reinforced with welded wire mesh and behaves structurally as a continuous one-way slab orientated perpendicularly to the joists.

The Hambro joist develops the composite action once the concrete has reached its required maximum compressive strength. It is obtained by the friction between the steel of the top chord and the concrete as well as by the horizontal bearing force of the joist shoe. It is important to respect a minimum of 6 in. (152 mm) of concrete between the center line of a joist and the edge of a slab opening in order to maintain the composite action.

The Hambro composite floor system is versatile and is used in different types of building construction, i.e. masonry, steel, cast in concrete and wood, ranging from the single-family homes to multi-story residential and office complexes. The following figures illustrate the most common bearing situations and uses of the system.
HAMBRO PRODUCTS
Our Hambro offer consists of the three following products: D500 and MD2000 joist systems, and composite girder. The selection of the product depends on the bearing conditions, the field situation, the loads and the spans.

<table>
<thead>
<tr>
<th>Product</th>
<th>Series</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>D500 joist system</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>MD2000 joist system</td>
<td>MDH</td>
<td></td>
</tr>
<tr>
<td>Composite girder</td>
<td>HJG</td>
<td></td>
</tr>
</tbody>
</table>

JOIST COMPONENTS
The unique top chord section has four basic functions:

1. It acts as a compression member during the concreting stage.
2. It acts as the “high chair” for the welded wire mesh, developing negative moment capacity in the concrete slab where it is required - over the joist top chord.
3. It supports the slab forming system.
4. It automatically becomes a continuous shear connector for the composite stage.

The bottom chord acts as a tension member during both the concreting stage and the service life.

The web system ties the top and bottom chords together and resists the vertical shear in the conventional truss manner.
IMPORTANT NOTES FOR ENGINEERS

GRAVITY LOADS
The Hambro system is mainly designed to support gravity loads, however, lateral loads can also be applied. The lateral loads are transferred solely through the slab and the engineer responsible for the project is in charge of designing the necessary reinforcements. Canam engineering staff offers support in order to optimize the design of the slab as a diaphragm.

REACTION ON SUPPORT ELEMENTS
The engineer responsible for the project should take into consideration that the total end reaction is concentrated at the shoe when designing the supporting elements.

VIBRATION
The vibration for Hambro joists is calculated according to AISC Design Guide 11 named Floor Vibration Due to Human Activity accepted by the Canadian Institute of Steel Construction (CISC). The vibration calculation for the Hambro joist considers full height partition everywhere on the floor (heavy partition), it uses a beta ratio of 0.05 and assumes rigid supports for joist bearing.

If the engineer responsible for the project requires different vibration criteria, he can specify a minimum joist inertia or provide a different damping beta ratio to respect.

WIRE MESH
The Canam engineering team is responsible for the design of the concrete slab to support the gravity loads, therefore Canam will specify which size of wire mesh shall be used as it varies according to the project. Wire mesh size should not be indicated on the structural drawings, please put a note referring to the Canam drawings.

DECK FASTENERS
The type of deck fasteners on the Hambro MD2000 system is at the preference of the erector with the project engineer’s approval. However the choice must be made according to one of the options (welded or screwed) indicated on the Canam drawings.

PRECAUTION FOR COMPOSITE ACTION
In all instance, a minimum distance of 6 in. (152 mm) needs to be respected between the edge of slab and the center line of a joist in order to maintain the composite action.

INSTALLATION
The installation of the system is fast and simple and doesn’t require shoring. For more information on the installation process please refer to the Hambro D500 Installation Manual that can be found at www.canam-construction.com.
STEEL

The Hambro joist and joist girder design makes use of high strength steel in accordance with the latest issue of the standards below:

- Cold formed angles, “S” shaped top chord, and U-shaped channels: ASTM A1011
- Hot rolled angles and round bars: CAN/CSA-G40.20/G40.21

The yield strengths of the different components are as followed:

- Top chords: 65 ksi (450 MPa)
- Hot or cold formed angles and channels: 50 ksi (350 MPa) min.
- Round bars: 50 ksi (350 MPa)

DESIGN STANDARDS

The Hambro joist and joist girder design is based on these issues of the following designs standards:

- CAN/CSA-S16-14
- CAN/CSA-S136-12
- NBCC 2010

The Hambro concrete slab design is based on the following design standard:

- CAN/CSA-A23.3-04

Whenever a design standard is mentioned in the following pages, it refers to the edition stated above.

QUALITY ASSURANCE

Over the years, we have established strict quality standards. All our welders, inspectors, and quality assurance technicians are certified by the Canadian Welding Bureau (CWB). We do visual inspections on 100% of the welded joints and non-destructive testing if required.

APPROVALS

The Hambro Composite Floor System is approved, classified, listed, recognized, certified or accepted by the following approving bodies or agencies:

1. CCMC No. 06292-R
 irc.nrc-cnrc.gc.ca/ccmc/registry/13/06292_f.pdf
2. International Conference of Buildings Officials (ICBO) Legacy Report No. PFC 2869
3. Miami-Dade County, Florida
 Acceptance No. 16-0224.14
 www.miamidade.gov
JOIST MEMBERS
The D500 joist system (H series) features a top chord made of a cold formed “S” shaped section, an open web of bent steel rods and a wide range of two angles back-to-back (hot rolled and cold formed) as bottom chord.

JOIST SHOE
The Hambro joist shoe consists of an angle with a vertical leg of 2 in. (51 mm), a horizontal leg of variable lengths between 3 in. (76 mm), 4 in. (102 mm), 5 in. (127 mm) or 6 in. (152 mm), a thickness of ¼ in. (6 mm) and a variable width depending on the fastening method.
Accessories

Shoe configuration is adapted according to the fastening method, options are shown in the following figures.

SPAN AND DEPTH

Span: up to 43 ft. (13,100 mm)

Depth: between 8 in. (200 mm) and 24 in. (600 mm)

JOIST SPACING

The standard joist spacing is 4 ft.-1¼ in. (1,251 mm), unless noted otherwise on Canam drawings.

MAXIMUM END REACTION

The maximum factored end reaction of the D500 joist is 17.8 kip (79.2 kN) at the composite stage.

FORMWORKS

Formworks for the D500 product consist of rollbars and plywood.

Rollbars are inserted into slots along the vertical portion of the top chord and spaced at every 7, 14 or 21 in. (178, 356 or 533 mm) according to the slab thickness.

Mainly, there are two types of rollbars:

1. **Fixed:** no movement allowed along the rollbar length [2 ft.-1¼ in. (641 mm), 4 ft.-1¼ in. (1,251 mm) and 5 ft.-1¼ in. (1,556 mm)].

2. **Extensible:** steel pieces can slip along the rollbar length to accommodate the joist spacing from 1 ft.-1½ in. to 4 ft.-4 in. (597 to 1,321 mm). Due to the fact that these rollbars are not fixed, additional steel stopper or wood pieces are required at their location to stabilize the system (refer to Hambro D500 Installation Manual or Hambro drawings).
Plywood sheets are installed over the rollbars to serve as formwork during the concrete pour. Plywood thickness is a function of rollbars spacing and slab thickness. Thicknesses of ½ in. (12.7 mm) and ¾ in. (9.5 mm) are used. Most of the time, standard sheets dimensions [4 ft. x 8 ft. (1,220 mm x 2,440 mm)] can be used without cutting due to the standard joist spacing.

LATERAL STABILITY

At the non-composite stage, joists are braced at the top and bottom chords with rollbars in order to prevent lateral buckling and to hold the joist in the vertical plane during construction. These lateral support are temporary. These rollbars lines must be continuous. At the end of the bay, the rollbars must be firmly secured to a wall or steel beam that must be designed to carry the loads transferred by these rollbars lines. If there is no wall or beam at the end of the bay, then the bottom chord can be braced temporarily to the floor below.

At the composite stage, rollbars are removed. The lateral stability of the top chord is ensured by its embedment in the concrete slab.
Maximum Duct Opening

The following table is a guideline for the maximum duct sizes that can fit through the openings of the different joist depths.

![Duct opening for D500 joists](image)

<table>
<thead>
<tr>
<th>Joist depth</th>
<th>P</th>
<th>D</th>
<th>Sq</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>20</td>
<td>3½</td>
<td>3½</td>
<td>6x2½</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>5½</td>
<td>4½</td>
<td>7x3½</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>7¼</td>
<td>5¼</td>
<td>9x4¾</td>
</tr>
<tr>
<td>14</td>
<td>24</td>
<td>8½</td>
<td>6¼</td>
<td>9½x5¼</td>
</tr>
<tr>
<td>16</td>
<td>24</td>
<td>9½</td>
<td>7½</td>
<td>10½x5½</td>
</tr>
<tr>
<td>18</td>
<td>24</td>
<td>10½</td>
<td>8¼</td>
<td>11x6¼</td>
</tr>
<tr>
<td>20</td>
<td>24</td>
<td>11</td>
<td>9</td>
<td>12x6¾</td>
</tr>
<tr>
<td>22</td>
<td>24</td>
<td>12</td>
<td>9½</td>
<td>12½x7½</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>12¾</td>
<td>10</td>
<td>13x7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum duct opening (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joist depth</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>250</td>
</tr>
<tr>
<td>300</td>
</tr>
<tr>
<td>350</td>
</tr>
<tr>
<td>400</td>
</tr>
<tr>
<td>450</td>
</tr>
<tr>
<td>500</td>
</tr>
<tr>
<td>550</td>
</tr>
<tr>
<td>600</td>
</tr>
</tbody>
</table>
SLAB
The minimum slab thickness is 3 in. (76 mm) and the slab capacity chart tables on pages 23 and 24, show the total allowable load (including the dead load of the slab) based on 3 ksi (20 MPa) concrete strength.

ACCESSORIES
Accessories are used to accommodate special cases.
1. Hanger plate: for extra slab thickness
 Extra thickness available: 2 in. (51 mm), 3 in. (76 mm),
 5 in. (127 mm) and 6 in. (152 mm).

MINI-JOIST
The Hambro D500 top chord section, being 3¾ in. (95 mm), possesses sufficient capacity to become the major steel component of the D500 mini-joist series. The three available types are illustrated below. The first type is called TC and has no reinforcement. The second one is the RTC with a rod reinforcement at the bottom of the vertical lip. The third and last one is the SRTC with a rod reinforcement into the “S” section and a steel angle at the bottom of the vertical lip. Full scale tests have demonstrated consistently that the TC and RTC types do not require a shoe, so the “S” part of the top chord bears directly on the support. The SRTC has a steel angle shoe, same as the D500 joist.
FIRE RATING

Fire protection floor/ceiling assemblies using Hambro have been tested by independent laboratories. Fire resistance ratings have been issued by Underwriters Laboratories Inc. (UL) and by Underwriters Laboratories of Canada (ULC). These tests cover gypsum board, acoustical tile and spray on protection systems.

Reference to these published listings should be made in the detailing of the ceiling construction. The following table is for information only, the original publication of these standards should be consulted before specifying it. The latest update of these listings is available on the UL directory or its website at www.ul.com or ULC website at www.ulc.ca.

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Assembly detail</th>
<th>Ceiling description</th>
<th>Design No.</th>
<th>Slab</th>
<th>Fire rating (h)</th>
<th>Beam rating (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gypsum board ½ in. (12.7 mm) Type C or ¾ in. (16 mm) Type X</td>
<td>I506</td>
<td>2½ in. (65 mm)</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>I506</td>
<td>3½ in. (80 mm)</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gypsum board ¾ in. (16 mm) Type C</td>
<td>I518</td>
<td>2½ in. (65 mm)</td>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>I518</td>
<td>2¼ to 3 in. (70 to 75 mm)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suspended or ceiling tile</td>
<td>G524</td>
<td>Varies</td>
<td>1 to 3</td>
<td>1 to 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gypsum board ¾ in. (16 mm) Type C</td>
<td>G525</td>
<td>3¼ in. (80 mm)</td>
<td>2 to 3</td>
<td>2 to 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G203</td>
<td>G203</td>
<td>2½ in. (70 mm)</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G203</td>
<td>3¼ in. (80 mm)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G213</td>
<td>G213</td>
<td>3 in. (75 mm)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G213</td>
<td>4 in. (100 mm)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G227</td>
<td>G227</td>
<td>2½ in. (65 mm)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G228</td>
<td>G228</td>
<td>3¼ in. (80 mm)</td>
<td>1.5 to 2</td>
<td>1.5 to 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G229</td>
<td>2½ in. (65 mm)</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G229</td>
<td>3 in. (75 mm)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G229</td>
<td>4 in. (100 mm)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spray on</td>
<td>G702</td>
<td>Varies</td>
<td>1 to 3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I800</td>
<td>G802</td>
<td>2½ to 3½ in. (65 to 90 mm)</td>
<td>1 to 2</td>
<td>-</td>
</tr>
</tbody>
</table>

¾ in. (16 mm) type X applicable only in G524 for 1 hour fire rating.

Please contact your Canam sales representative for any questions regarding the system’s fire rating.
ACOUSTICAL PROPERTIES

SOUND TRANSMISSION CLASS (STC)

The STC is a rating that assigns a numerical value to the sound insulation provided by a partition separating rooms or areas. The rating is designed to match subjective impressions of the sound insulation provided against the sounds of speech, music, television, office machines and similar sources of airborne noise characteristic of offices and dwellings.

Here are the guidelines for a sample of STC ratings:

<table>
<thead>
<tr>
<th>STC Rating</th>
<th>Practical guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Normal speech easily understood</td>
</tr>
<tr>
<td>30</td>
<td>Normal speech audible, but not intelligible</td>
</tr>
<tr>
<td>35</td>
<td>Loud speech audible, fairly understandable</td>
</tr>
<tr>
<td>40</td>
<td>Loud speech audible, but not intelligible</td>
</tr>
<tr>
<td>45</td>
<td>Loud speech barely audible</td>
</tr>
<tr>
<td>50</td>
<td>Shouting barely audible</td>
</tr>
<tr>
<td>55</td>
<td>Shouting inaudible</td>
</tr>
</tbody>
</table>

IMPACT INSULATION CLASS (IIC)

The Impact Insulation Class (IIC) is a rating designed to measure the impact sound insulation provided by the floor/ceiling construction. The IIC of any assembly is strongly affected by and dependent upon the type of floor finish for its resistance to impact noise transmission.

ACOUSTICAL PERFORMANCES

The result in the following table have been obtained following laboratory testing. Field testing may vary depending on the quality of the assembly and the various materials used. Note that the minimum design slab thickness for Hambro D500 system is 3 in. (76 mm).

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Slab thickness in. (mm)</th>
<th>Gypsum thickness in. (mm)</th>
<th># of gypsum layer</th>
<th>STC</th>
<th>IIC</th>
<th>Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2½ (63.5)</td>
<td>½ (12.7)</td>
<td>1</td>
<td>53</td>
<td>26</td>
<td>NGC Testing Services Buffalo, NY, USA www.ngctestingservices.com</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>National Research Concil Ottawa, ON, CA http://www.nrc-cnrc.gc.ca</td>
</tr>
<tr>
<td></td>
<td>2½ (63.5)</td>
<td>5/8 (15.9)</td>
<td>1</td>
<td>57</td>
<td>30</td>
<td>NGC Testing Services Buffalo, NY, USA www.ngctestingservices.com</td>
</tr>
<tr>
<td></td>
<td>4 (102)</td>
<td>½ (12.7)</td>
<td>1</td>
<td>N/A</td>
<td>32</td>
<td>NGC Testing Services Buffalo, NY, USA www.ngctestingservices.com</td>
</tr>
<tr>
<td></td>
<td>4 (102)</td>
<td>½ (12.7)</td>
<td>2</td>
<td>63</td>
<td>36</td>
<td>NGC Testing Services Buffalo, NY, USA www.ngctestingservices.com</td>
</tr>
</tbody>
</table>
Since the assemblies can have a wide range of components and performances, please contact a Canam representative for further information on the STC and IIC scores.

The following chart is provided as a reference only. The calculations of sound rating and design of floor/ceiling assemblies with regard to acoustical properties are a building designer responsibility.

Floor Finishes IIC Ratings

<table>
<thead>
<tr>
<th>Floor Finishes</th>
<th>IIC Ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carpet and pad</td>
<td>50</td>
</tr>
<tr>
<td>Homasote ½ in. (12.7 mm) ComfortBase® under wood laminate</td>
<td>44</td>
</tr>
<tr>
<td>www.homasote.com</td>
<td></td>
</tr>
<tr>
<td>¼ in. (6 mm) cork under engineer hardwood</td>
<td>47</td>
</tr>
<tr>
<td>QT scu - QT4010 ¾ in. (10 mm) underlayment under ceramic tile</td>
<td>46</td>
</tr>
<tr>
<td>www.ecoreintl.com</td>
<td></td>
</tr>
<tr>
<td>QuietWalk® underlayment under laminate flooring</td>
<td>45</td>
</tr>
<tr>
<td>www.mpglobalproducts.com</td>
<td></td>
</tr>
<tr>
<td>Insulayment under engineered wood</td>
<td>46</td>
</tr>
<tr>
<td>www.mpglobalproducts.com</td>
<td></td>
</tr>
<tr>
<td>1½ in. (38.1 mm) Maxxon® gypsum underlayment over Enkasonic® sound control mat</td>
<td>54</td>
</tr>
<tr>
<td>with quarry tile over NobleSeal® SIS</td>
<td></td>
</tr>
<tr>
<td>www.maxxon.com</td>
<td></td>
</tr>
<tr>
<td>1½ in. (38.1 mm) Maxxon® gypsum underlayment over Enkasonic® sound control mat</td>
<td>55</td>
</tr>
<tr>
<td>with wood laminate floor over Silentstep underlayment</td>
<td></td>
</tr>
<tr>
<td>www.maxxon.com</td>
<td></td>
</tr>
<tr>
<td>1½ in. (38.1 mm) Maxxon® gypsum underlayment over Enkasonic® sound control mat</td>
<td>53</td>
</tr>
<tr>
<td>with Armstrong Commission® Plus Sheet Vinyl</td>
<td></td>
</tr>
<tr>
<td>www.maxxon.com</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

All products tested were on a 2½ in. (63.5 mm) Hambro slab with a one layer ½ in. (12.7 mm) drywall ceiling. This chart is provided as a reference. The calculations of sound rating and design of floor/ceiling assemblies with regard to acoustical properties are a building designer/specialty engineer’s responsibility. Actual field results may vary depending on installation and materials. All product tests were performed at NGC Testing Services, Buffalo, NY, USA (www.ngctestingservices.com). These IIC ratings can only be added to the IIC Hambro results for the 2½ in. (63.5 mm) slab.

ACOUSTICAL ASSOCIATIONS AND CONSULTANTS

Because sound transmission and impact insulation depend upon a number of variables relating to the installation and materials used, Canam makes no assessments about the sound transmission performance of its products as installed. You should consult with a qualified acoustical consultant if you would like information about the final sound performance on the project.

The following is a list of acoustical associations that may be found on the Internet:

2. Canadian Acoustical Association – www.caa-aca.ca;
As a convenience, Canam is providing the following list of vendors who have worked with the Hambro product. This list is not an endorsement. Canam has no affiliation with these providers, and makes no representations concerning their abilities.

Sieben Associates, Inc.
625 NW 60th Street, Suite C
Gainesville, FL
32607
United States

Octave Acoustique, Inc.
963, chemin Royal
Saint-Laurent-de-l’île-d’Orléans, QC
G0A 4N0
Canada

Acousti-Lab
Robert Ducharme
C.P. 5028
Ste-Anne-des-Plaines, QC
J0N 1H0
Canada

Acousti-Tech
Vincent Moreau
150, rue Léon-Vachon
Saint-Lambert-de-Lauzon, QC
G0S 2N0
Canada

Octave Acoustique, Inc.
963, chemin Royal
Saint-Laurent-de-l’île-d’Orléans, QC
G0A 4N0
Canada

SELECTION TABLES

D500 JOIST SPAN TABLES

The joist span tables are provided to assist engineers in selecting the most optimal depth of joist for a particular slab thickness and a specific loading. The engineer must specify the joist depth, slab thickness, the design loads, special point loads and linear loads where applicable. Canam will provide composite joists designed to meet these requirements.

The following load tables are guidelines and give the optimized depth for specific spans, slab thickness and loads. The optimal situation is represented by the value 1.00 in the tables. Values greater than 1.00 represent the additional weight percentage at the optimum value. The first depth recorded per table indicates the minimum that could be used for the length specified.

Other types of loading and slab thickness than the ones shown in this section can be used for the Hambro D500 system. If the criteria for your project are different from those contained in the tables, please contact a Canam representative for assistance.

Note:

The validation of the optimal depth must be done in conjunction with the validation of the concrete slab capacity.

Joist spacing and concrete strength table

Values indicated are calculated with a regular spacing of 4 ft.-1¼ in. (1,251 mm) and a concrete strength of 3 ksi (20 MPa).

Loads

The tables have been prepared for four categories of loading depending on the usage of the floor:

<table>
<thead>
<tr>
<th>Use</th>
<th>Uniform load</th>
<th>or</th>
<th>Point load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>40 psf (1.92 kPa)</td>
<td>1.01 kip (4.5 kN)</td>
<td></td>
</tr>
<tr>
<td>Office</td>
<td>50 psf (2.4 kPa)</td>
<td>2.02 kip (9 kN)</td>
<td></td>
</tr>
<tr>
<td>Corridor/lobby</td>
<td>100 psf (4.8 kPa)</td>
<td>1.01 kip (4.5 kN) or 2.02 kip (9 kN)</td>
<td></td>
</tr>
<tr>
<td>Garage</td>
<td>50 psf (2.4 kPa)</td>
<td>4.05 kip (18 kN)</td>
<td></td>
</tr>
</tbody>
</table>
Dead load
The tables have been prepared for different slab thicknesses, therefore different dead loads:

<table>
<thead>
<tr>
<th>Slab thickness</th>
<th>Dead load</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 in. (76 mm)</td>
<td>65 psf (3.11 kPa)</td>
</tr>
<tr>
<td>3½ in. (89 mm)</td>
<td>71 psf (3.40 kPa)</td>
</tr>
<tr>
<td>4 in. (102 mm)</td>
<td>78 psf (3.73 kPa)</td>
</tr>
<tr>
<td>4½ in. (114 mm)</td>
<td>83 psf (3.97 kPa)</td>
</tr>
<tr>
<td>5 in. (127 mm)</td>
<td>89 psf (4.26 kPa)</td>
</tr>
<tr>
<td>5½ in. (140 mm)</td>
<td>95 psf (4.55 kPa)</td>
</tr>
</tbody>
</table>

Deflection criteria
For all cases presented in the tables, deflection for live load does not exceed \(L/360 \).

Vibration criteria
Maximum peak acceleration in full height partition: 0.5% a/g
Damping ratio \(\beta \): 5%

Joist designation
D500 joists are designated HXX (HXXX) on drawings. For example, H14 (H350) means that the joist is 14 in. (350 mm) depth. The depth of a joist is measured from the underside of the slab to the extremity of the bottom chord.

Example
Find the optimal depth and the minimum depth for the following office project with Hambro D500 joists (H series).

<table>
<thead>
<tr>
<th></th>
<th>Imperial</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Span</td>
<td>32 ft.-0 in.</td>
<td>(9,755 mm)</td>
</tr>
<tr>
<td>Slab thickness</td>
<td>4 in.</td>
<td>(100 mm)</td>
</tr>
<tr>
<td>Joists spacing</td>
<td>4 ft.-1¼ in.</td>
<td>(1,251 mm)</td>
</tr>
<tr>
<td>Concrete strength</td>
<td>3 ksi</td>
<td>(20 MPa)</td>
</tr>
<tr>
<td>Concrete density</td>
<td>145 pcf</td>
<td>(2,400 kg/m³)</td>
</tr>
<tr>
<td>Live load</td>
<td>50 psf</td>
<td>(2.4 kPa)</td>
</tr>
<tr>
<td>Dead load</td>
<td>78 psf</td>
<td>(3.73 kPa)</td>
</tr>
<tr>
<td>- Joist</td>
<td>3.15 psf</td>
<td>(0.15 kN/m²)</td>
</tr>
<tr>
<td>- Concrete</td>
<td>49 psf</td>
<td>(2.35 kN/m²)</td>
</tr>
<tr>
<td>- Mechanical</td>
<td>2.5 psf</td>
<td>(0.12 kN/m²)</td>
</tr>
<tr>
<td>- Ceiling</td>
<td>3.15 psf</td>
<td>(0.15 kN/m²)</td>
</tr>
<tr>
<td>- Partition</td>
<td>20 psf</td>
<td>(0.96 kN/m²)</td>
</tr>
</tbody>
</table>

Using this information, you can find in the tables that:
1. The optimal joist depth is: 20 in. (500 mm).
2. The minimum joist depth is: 14 in. (350 mm).
Hambro D500 Composite Floor System

Residential Office Corridor/lobby Garage

<table>
<thead>
<tr>
<th>Live loads</th>
<th>40 psf (1.92 kPa)</th>
<th>50 psf (2.4 kPa)</th>
<th>100 psf (4.8 kPa)</th>
<th>50 psf (2.4 kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slab thickness (in.)</td>
<td>3</td>
<td>3½</td>
<td>4</td>
<td>4½</td>
</tr>
<tr>
<td>Slab thickness (mm)</td>
<td>75</td>
<td>90</td>
<td>100</td>
<td>115</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Length (ft. / mm)</th>
<th>Depth (in. / mm)</th>
<th>8 in. / 200 mm</th>
<th>10 in. / 250 mm</th>
<th>12 in. / 300 mm</th>
<th>14 in. / 350 mm</th>
<th>16 in. / 400 mm</th>
<th>18 in. / 450 mm</th>
<th>20 in. / 500 mm</th>
<th>24 in. / 600 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 ft. / 3,660 mm</td>
<td>12 ft. / 3,660 mm</td>
<td>1.06</td>
<td>1.06</td>
<td>1.06</td>
<td>1.06</td>
<td>1.05</td>
<td>1.05</td>
<td>1.05</td>
<td>1.05</td>
</tr>
<tr>
<td>14 ft. / 4,270 mm</td>
<td>14 ft. / 4,270 mm</td>
<td>1.09</td>
<td>1.11</td>
<td>1.11</td>
<td>1.11</td>
<td>1.08</td>
<td>1.12</td>
<td>1.14</td>
<td>1.14</td>
</tr>
<tr>
<td>16 ft. / 4,880 mm</td>
<td>16 ft. / 4,880 mm</td>
<td>1.05</td>
<td>1.05</td>
<td>1.05</td>
<td>1.05</td>
<td>1.05</td>
<td>1.05</td>
<td>1.05</td>
<td>1.05</td>
</tr>
<tr>
<td>18 ft. / 5,490 mm</td>
<td>18 ft. / 5,490 mm</td>
<td>1.00</td>
<td>1.00</td>
<td>1.02</td>
<td>1.02</td>
<td>1.02</td>
<td>1.04</td>
<td>1.04</td>
<td>1.04</td>
</tr>
<tr>
<td>20 ft. / 6,100 mm</td>
<td>20 ft. / 6,100 mm</td>
<td>1.04</td>
<td>1.04</td>
<td>1.04</td>
<td>1.04</td>
<td>1.04</td>
<td>1.04</td>
<td>1.04</td>
<td>1.04</td>
</tr>
</tbody>
</table>

Most optimal situation of the live load category

Most optimal depth according to slab thickness

End joint reaction not acceptable and/or compression into top chord is higher than the maximum factored capacity

Notes:
- Live loads are applied to the slab.
- Slab thickness is determined based on the live load category.
- Length and depth are provided in both feet and millimeters.
D500 span tables

Most optimal situation of the live load category
- Most optimal depth according to slab thickness
- End joist reaction not acceptable and/or compression into top chord is higher than the maximum factored capacity

Residential Office Corridor/lobby Garage

<table>
<thead>
<tr>
<th>Live loads</th>
<th>Slab thickness (in.)</th>
<th>Slab thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 psf (1.2 kPa)</td>
<td>3 3½ 4 4½ 5</td>
<td>75 90 100 115 125</td>
</tr>
<tr>
<td>50 psf (2.4 kPa)</td>
<td>3 3½ 4 4½ 5</td>
<td>75 90 100 115 125</td>
</tr>
<tr>
<td>100 psf (4.8 kPa)</td>
<td>3 3½ 4 4½ 5</td>
<td>75 90 100 115 125</td>
</tr>
<tr>
<td>50 psf (2.4 kPa)</td>
<td>5</td>
<td>140</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Length (ft. / mm)</th>
<th>Depth (in. / mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 ft. / 6,710 mm</td>
<td>10 in. / 250 mm</td>
</tr>
<tr>
<td></td>
<td>12 in. / 300 mm</td>
</tr>
<tr>
<td></td>
<td>14 in. / 350 mm</td>
</tr>
<tr>
<td></td>
<td>16 in. / 400 mm</td>
</tr>
<tr>
<td></td>
<td>18 in. / 450 mm</td>
</tr>
<tr>
<td></td>
<td>20 in. / 500 mm</td>
</tr>
<tr>
<td></td>
<td>22 in. / 550 mm</td>
</tr>
<tr>
<td>24 ft. / 7,315 mm</td>
<td>10 in. / 250 mm</td>
</tr>
<tr>
<td></td>
<td>12 in. / 300 mm</td>
</tr>
<tr>
<td></td>
<td>14 in. / 350 mm</td>
</tr>
<tr>
<td></td>
<td>16 in. / 400 mm</td>
</tr>
<tr>
<td></td>
<td>18 in. / 450 mm</td>
</tr>
<tr>
<td></td>
<td>20 in. / 500 mm</td>
</tr>
<tr>
<td></td>
<td>22 in. / 550 mm</td>
</tr>
<tr>
<td>26 ft. / 7,925 mm</td>
<td>10 in. / 250 mm</td>
</tr>
<tr>
<td></td>
<td>12 in. / 300 mm</td>
</tr>
<tr>
<td></td>
<td>14 in. / 350 mm</td>
</tr>
<tr>
<td></td>
<td>16 in. / 400 mm</td>
</tr>
<tr>
<td></td>
<td>18 in. / 450 mm</td>
</tr>
<tr>
<td></td>
<td>20 in. / 500 mm</td>
</tr>
<tr>
<td></td>
<td>22 in. / 550 mm</td>
</tr>
<tr>
<td>28 ft. / 8,535 mm</td>
<td>10 in. / 250 mm</td>
</tr>
<tr>
<td></td>
<td>12 in. / 300 mm</td>
</tr>
<tr>
<td></td>
<td>14 in. / 350 mm</td>
</tr>
<tr>
<td></td>
<td>16 in. / 400 mm</td>
</tr>
<tr>
<td></td>
<td>18 in. / 450 mm</td>
</tr>
<tr>
<td></td>
<td>20 in. / 500 mm</td>
</tr>
<tr>
<td></td>
<td>22 in. / 550 mm</td>
</tr>
<tr>
<td>30 ft. / 9,145 mm</td>
<td>10 in. / 250 mm</td>
</tr>
<tr>
<td></td>
<td>12 in. / 300 mm</td>
</tr>
<tr>
<td></td>
<td>14 in. / 350 mm</td>
</tr>
<tr>
<td></td>
<td>16 in. / 400 mm</td>
</tr>
<tr>
<td></td>
<td>18 in. / 450 mm</td>
</tr>
<tr>
<td></td>
<td>20 in. / 500 mm</td>
</tr>
<tr>
<td></td>
<td>22 in. / 550 mm</td>
</tr>
</tbody>
</table>
D500 span tables

<table>
<thead>
<tr>
<th>Live loads</th>
<th>Slab thickness (in.)</th>
<th>Slab thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>40 psf (1.92 kPa)</td>
<td>50 psf (2.4 kPa)</td>
</tr>
<tr>
<td>Office</td>
<td>100 psf (4.8 kPa)</td>
<td>50 psf (2.4 kPa)</td>
</tr>
<tr>
<td>Corridor/lobby</td>
<td>3 3½ 4 4½ 5 3 3½ 4 4½ 5 3 3½ 4 4½ 5 5½</td>
<td>75 90 100 115 125 75 90 100 115 125 75 90 100 115 125 140</td>
</tr>
<tr>
<td>Garage</td>
<td>3 3½ 4 4½ 5 3 3½ 4 4½ 5 3 3½ 4 4½ 5 5½</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Length (ft. / mm)</th>
<th>Depth (in. / mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 ft. / 9,755 mm</td>
<td>14 in. / 350 mm</td>
</tr>
<tr>
<td></td>
<td>16 in. / 400 mm</td>
</tr>
<tr>
<td></td>
<td>18 in. / 450 mm</td>
</tr>
<tr>
<td></td>
<td>20 in. / 500 mm</td>
</tr>
<tr>
<td></td>
<td>22 in. / 550 mm</td>
</tr>
<tr>
<td></td>
<td>24 in. / 600 mm</td>
</tr>
<tr>
<td>34 ft. / 10,365 mm</td>
<td>14 in. / 350 mm</td>
</tr>
<tr>
<td></td>
<td>16 in. / 400 mm</td>
</tr>
<tr>
<td></td>
<td>18 in. / 450 mm</td>
</tr>
<tr>
<td></td>
<td>20 in. / 500 mm</td>
</tr>
<tr>
<td></td>
<td>22 in. / 550 mm</td>
</tr>
<tr>
<td></td>
<td>24 in. / 600 mm</td>
</tr>
<tr>
<td>36 ft. / 10,975 mm</td>
<td>16 in. / 400 mm</td>
</tr>
<tr>
<td></td>
<td>18 in. / 450 mm</td>
</tr>
<tr>
<td></td>
<td>20 in. / 500 mm</td>
</tr>
<tr>
<td></td>
<td>22 in. / 550 mm</td>
</tr>
<tr>
<td></td>
<td>24 in. / 600 mm</td>
</tr>
<tr>
<td>38 ft. / 11,585 mm</td>
<td>16 in. / 400 mm</td>
</tr>
<tr>
<td></td>
<td>18 in. / 450 mm</td>
</tr>
<tr>
<td></td>
<td>20 in. / 500 mm</td>
</tr>
<tr>
<td></td>
<td>22 in. / 550 mm</td>
</tr>
<tr>
<td></td>
<td>24 in. / 600 mm</td>
</tr>
<tr>
<td>40 ft. / 12,190 mm</td>
<td>18 in. / 450 mm</td>
</tr>
<tr>
<td></td>
<td>20 in. / 500 mm</td>
</tr>
<tr>
<td></td>
<td>22 in. / 550 mm</td>
</tr>
<tr>
<td></td>
<td>24 in. / 600 mm</td>
</tr>
<tr>
<td>43 ft. / 13,110 mm</td>
<td>20 in. / 500 mm</td>
</tr>
<tr>
<td></td>
<td>22 in. / 550 mm</td>
</tr>
<tr>
<td></td>
<td>24 in. / 600 mm</td>
</tr>
</tbody>
</table>

Most optimal situation of the live load category
Most optimal depth according to slab thickness
End joint reaction not acceptable and/or compression into top chord is higher than the maximum factored capacity
D500 MINI-JOIST SPAN TABLES

The following tables show the maximum total length of the three types of D500 mini-joist, considering a spacing of 4 ft.-1¼ in. (1,251 mm) and the uniform loads presented. The minimum length for the D500 mini-joist is 4 ft. (1,220 mm).

<table>
<thead>
<tr>
<th>Slab thickness (in.)</th>
<th>3</th>
<th>3½</th>
<th>4</th>
<th>4½</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead load (psf)</td>
<td>65</td>
<td>71</td>
<td>78</td>
<td>83</td>
<td>89</td>
</tr>
<tr>
<td>Live load (psf)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC</td>
<td>4'-7''</td>
<td>4'-7''</td>
<td>4'-4''</td>
<td>4'-2''</td>
<td>4'-1''</td>
</tr>
<tr>
<td>RTC</td>
<td>6'-0''</td>
<td>6'-0''</td>
<td>6'-0''</td>
<td>6'-0''</td>
<td>6'-0''</td>
</tr>
<tr>
<td>SRTC</td>
<td>8'-8''</td>
<td>8'-8''</td>
<td>8'-8''</td>
<td>8'-8''</td>
<td>8'-8''</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slab thickness (mm)</th>
<th>75</th>
<th>90</th>
<th>100</th>
<th>115</th>
<th>125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead load (kPa)</td>
<td>3.1</td>
<td>3.4</td>
<td>3.7</td>
<td>4.0</td>
<td>4.3</td>
</tr>
<tr>
<td>Live load (kPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC</td>
<td>1,397</td>
<td>1,397</td>
<td>1,321</td>
<td>1,270</td>
<td>1,245</td>
</tr>
<tr>
<td>RTC</td>
<td>1,829</td>
<td>1,829</td>
<td>1,829</td>
<td>1,829</td>
<td>1,829</td>
</tr>
<tr>
<td>SRTC</td>
<td>2,642</td>
<td>2,642</td>
<td>2,642</td>
<td>2,642</td>
<td>2,642</td>
</tr>
</tbody>
</table>

Notes:
The total spans indicated in these tables are considered to be out to out, meaning they take into account a joist seat of normally 4 in. (102 mm) long at each end, therefore the maximum clear span (without the joist seats) is 8 ft. (2,438 mm).

SLAB TABLES FOR D500 PRODUCT

Mesh size

The typical wire mesh used has a yield strength of 65,000 psi minimum. The typical sizes used are indicated in the following table:

<table>
<thead>
<tr>
<th>Metric</th>
<th>Imperial</th>
<th>Diameter</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>152 x 152 MW18.7 x MW18.7</td>
<td>6 x 6 W2.9 / W2.9 (6x6-6/6)</td>
<td>0.192</td>
<td>4.88</td>
</tr>
<tr>
<td>152 x 152 MW25.7 x MW25.7</td>
<td>6 x 6 W4 / W4 (6x6-4/4)</td>
<td>0.226</td>
<td>5.74</td>
</tr>
</tbody>
</table>
Slab capacity under uniform load

D500 - Slab capacity chart for uniform loading (total factored load in psf)

- \(f'_c = 3,000 \text{ psi}, \rho = 145 \text{ pcf}, F_y = 65,000 \text{ psi} \)

<table>
<thead>
<tr>
<th>Slab thickness</th>
<th>Chair</th>
<th>Mesh size (6 in. x 6 in.)</th>
<th>Joist spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 in.</td>
<td>N/A</td>
<td>W6 / W6</td>
<td>Exterior</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Interior</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2'-1¼"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4'-1¼"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5'-1¼"</td>
</tr>
<tr>
<td>3½ in.</td>
<td>N/A</td>
<td>W4 / W4</td>
<td>Exterior</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Interior</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2'-1¼"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4'-1¼"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5'-1¼"</td>
</tr>
<tr>
<td>4 in.</td>
<td>N/A</td>
<td>W4 / W4</td>
<td>Exterior</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Interior</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2'-1¼"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4'-1¼"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5'-1¼"</td>
</tr>
<tr>
<td>4½ in.</td>
<td>N/A</td>
<td>W4 / W4</td>
<td>Exterior</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Interior</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2'-1¼"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4'-1¼"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5'-1¼"</td>
</tr>
<tr>
<td>5½ in.</td>
<td>3 in.</td>
<td>W4 / W4</td>
<td>Exterior</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Interior</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2'-1¼"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4'-1¼"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5'-1¼"</td>
</tr>
</tbody>
</table>

D500 - Slab capacity chart for uniform loading (total factored load in kPa)

- \(f'_c = 20 \text{ MPa}, \rho = 2,400 \text{ kg/m}^3, F_y = 450 \text{ MPa} \)

<table>
<thead>
<tr>
<th>Slab thickness</th>
<th>Chair</th>
<th>Mesh size (152 mm x 152 mm)</th>
<th>Joist spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>76 mm</td>
<td>N/A</td>
<td>MW18.7 x MW18.7</td>
<td>Exterior</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Interior</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>641 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,251 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,556 mm</td>
</tr>
<tr>
<td>90 mm</td>
<td>N/A</td>
<td>MW25.7 x MW25.7</td>
<td>Exterior</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Interior</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>641 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,251 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,556 mm</td>
</tr>
<tr>
<td>102 mm</td>
<td>N/A</td>
<td>MW25.7 x MW25.7</td>
<td>Exterior</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Interior</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>641 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,251 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,556 mm</td>
</tr>
<tr>
<td>115 mm</td>
<td>N/A</td>
<td>MW18.7 x MW18.7</td>
<td>Exterior</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Interior</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>641 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,251 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,556 mm</td>
</tr>
<tr>
<td>140 mm</td>
<td>76 mm</td>
<td>MW18.7 x MW18.7(2)</td>
<td>Exterior</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Interior</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>641 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,251 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,556 mm</td>
</tr>
</tbody>
</table>

* Total factored load is taken as 1.25D + 1.5L

Where

- D = dead load
- L = live load

(1) Mesh size is only a recommendation. A Canam engineer will determine the mesh size.

(2) One layer of wire mesh on top chord and one layer on high chair.
Hambro D500 Composite Floor System

Slab capacity under concentrated load

D500 - Slab capacity chart for unfactored dead load (psf) with concentrated live load

\[f'_c = 3,000 \text{ psi, } \rho = 145 \text{ pcf, } F_y = 65,000 \text{ psi} \]

<table>
<thead>
<tr>
<th>Concentrated load</th>
<th>Slab thickness</th>
<th>Joist spacing</th>
<th>Mesh size (6 in. x 6 in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2'-1""</td>
<td>4'-1""</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exterior</td>
<td>Interior</td>
</tr>
<tr>
<td>Classroom/Residential</td>
<td>3 in.</td>
<td>W6 / W6</td>
<td>412</td>
</tr>
<tr>
<td>1 kip on 30 in. x 30 in.</td>
<td>W6 / W6</td>
<td>650</td>
<td>650</td>
</tr>
<tr>
<td>3½ in.</td>
<td>W4 / W4</td>
<td>782</td>
<td>782</td>
</tr>
<tr>
<td>4 in.</td>
<td>W4 / W4</td>
<td>783</td>
<td>812</td>
</tr>
<tr>
<td>2 layers W6 / W6</td>
<td>912</td>
<td>912</td>
<td>320</td>
</tr>
<tr>
<td>2 layers W4 / W4</td>
<td>912</td>
<td>912</td>
<td>460</td>
</tr>
<tr>
<td>4½ in.</td>
<td>W6 / W6</td>
<td>1,039</td>
<td>1,039</td>
</tr>
<tr>
<td>2 layers W4 / W4</td>
<td>1,039</td>
<td>1,039</td>
<td>461</td>
</tr>
</tbody>
</table>

Office	3½ in.	W4 / W4	636	643	-	143	-	-
2 kip on 30 in. x 30 in.	W4 / W4	642	699	120	145	-	83	
4 in.	W4 / W4	778	778	258	283	154	173	
2 layers W6 / W6	778	778	391	391	245	264		
2 layers W4 / W4	911	911	401	425	247	265		
4½ in.	W6 / W6	1,039	1,039	461	473	295	301	
2 layers W4 / W4	1,039	1,039	461	473	295	301		

| Garage | 5½ in. + 3 in. | W6 / W6 (2) | 555 | 628 | - | - | - | - |
| 4 kip on 4½ in. x 4½ in. | W4 / W4 | 628 | 628 | 131 | 278 | - | 216 |

Note:

- Needs to be used in conjunction with uniform load table.
- Mesh size is only a recommendation. A Canam engineer will determine the mesh size.
- One layer of wire mesh on top chord and one layer on high chair.
DESIGN PRINCIPLES

NON-COMPOSITE DESIGN

During the formwork installation and pouring process, Hambro joists are considered non-composite. At this stage, the top chord capacity controls the design of the joist.

Load distribution

At this stage, joist members behave in distinct ways:

1. The bottom chord, composed of two angles back-to-back, acts as a tension member.
2. The web, made of bent steel rods, acts as tension and compression member.
3. The “S” top chord, acts as a compression member.

Non-composite loads

1. Non-composite dead load

 The dead loads considered at the non-composite stage are from the concrete, formwork and joist self-weight.

 Concrete:
 \[
 \text{slab thickness} \times \text{concrete density}
 \]

 Example for a 3 in. (76 mm) slab:
 \[
 \left(\frac{\text{inh}}{\text{ft}^3} \right) \times 145 \text{ lb./ft}^3 = 36.25 \text{ psf}
 \]
 \[
 (0.076 \text{ m} \times 22.78 \text{kN/m}^3 = 1.73 \text{kN/m}^2)
 \]

 Formwork and joist:
 5 psf (0.24 kN/m²)

 Total factored dead load:
 1.25 x (concrete + formwork + joist)

 Example:
 1.25 x (36.25 + 5) = 51.6 psf

 (1.25 x (1.73 + 0.24) = 2.46 kN/m²)

2. Non-composite live load

 Construction live load:
 20 psf (0.96 kN/m²)

 Total factored live load:
 1.5 x (construction live load)

 Example:
 1.5 x 20 psf = 30 psf

 (1.5 x 0.96 kN/m² = 1.44 kN/m²)

3. Total factored load

 Example:
 51.6 + 30 = 81.60 psf

 (2.46 + 1.44 = 3.90 kN/m²)
Factored moment resistance

\[M_{\text{rc}} = C_e \text{ or } T_e \quad \text{i.e.} \]

\[\frac{W_{\text{nc}} L^2}{8} = C_e \text{ or } T_e \text{ whichever the lesser} \]

Where:

\[W_{\text{nc}} = \frac{81.60 \text{ psf} (3.90 \text{kN/m})}{n^2 \text{(m^2)}} \times \text{joist spacing (plf or kN/m)} \]

\[L = \text{joist length (ft. or m)} \]

\[C_e = \text{area of top chord} \times \text{factored compressive resistance (kip or kN)} \]

\[T_e = \text{area of bottom chord} \times \text{factored tensile resistance (kip or kN)} \]

\[e = \text{effective lever arm at non-composite stage} \]

\[d = \text{depth of joist (in. or mm)} \]

\[y_{bc} = \text{neutral axis of bottom chord (in. or mm)} \]

From the above formula, the maximum limiting span for unreinforced top chord may be computed for the non-composite stage. For spans beyond this value, the top chord must be strengthened. Strengthening of the top chord, when required, is usually accomplished by installing one or two rods in the curvatures of the “S” part of the top chord.

As for the bottom chord, it is sized for the total factored load which is more critical than the construction load; the design method is explained in the Composite design section.

Top chord properties

The information below presents the Hambro D500 top chord properties.

\[t = 0.09 \text{ in. (2.3 mm)} \]

\[A_{\text{gross}} = 0.618 \text{ in.}^2 (398.71 \text{ mm}^2) \]

\[A_{\text{net}} = 0.506 \text{ in.}^2 (326.45 \text{ mm}^2) \]

\[A_{\text{effective}} = 0.487 \text{ in.}^2 (314.19 \text{ mm}^2) \]

\[I_{x \text{ gross}} = 0.744 \text{ in.}^4 (3.097 \times 10^4 \text{ mm}^4) \]

\[I_{x \text{ net}} = 0.217 \text{ in.}^4 (9.032 \times 10^3 \text{ mm}^4) \]

\[I_{e \text{ gross}} = 0.650 \text{ in.}^4 (2.706 \times 10^5 \text{ mm}^4) \]

\[I_{e \text{ net}} = 0.185 \text{ in.}^4 (7.700 \times 10^4 \text{ mm}^4) \]

\[F_{y \text{ top chord}} = 65 \text{ ksi (450 MPa)} \]
COMPOSITE DESIGN

Joist composite design

For the design of the composite action, the effective width of concrete slab for an interior joist is taken as the minimum between:

\[b_e = \min \left(\frac{l_1}{10}; \frac{L_2}{2} \right) \]

Where:

- \(L \) = span of joist
- \(L_2 \) and \(L_3 \) = spacings adjacent to the joist

Effective width of interior D500 joists

The effective width of concrete slab for a perimeter joist:

\[b_e = L_v + \min \left(\frac{L_1}{10}; \frac{L_2}{2} \right) \]

Where:

- \(L \) = span of joist
- \(L_v \) = length of cantilever
- \(L_2 \) = first interior spacing

Effective width of D500 perimeter joists
Flexure design

The flexure design is calculated with the ultimate strength approach which is based on the actual failure strengths of the component materials. This method is initially used for composite beam or joist with stud connectors, and is applicable to the Hambro D500 joist as well.

Load capacity calculations involve the equilibrium of internal factored forces $C'_r = T_r$. In order to use this method, some assumptions need to be made:

1. The plastic neutral axis is strictly in the slab so that the whole steel section of the system works in tension.
2. The wire mesh reinforcement in the slab has been neglected in compression.
3. $\alpha_1 = 0.85$ since $f'_c \leq 4.35$ ksi (30 MPa)1.
4. Composite action is considered at 100%.

The simplified concrete stress block is used to find the ultimate tension. According to CAN/CSA-S16, clause 17.9.3 and CAN/CSA A23.3, clause 10.1.7, the factored resisting moment of the composite section is given by:

$$ M_{rc} = \bar{\alpha} s A_b F_{y} e' = T_re' $$

Where:

- e' = lever arm at composite stage = $d + $slab thickness $- a/2 - y_{bc}$, in. (mm)
- d = joist depth, in. (mm)
- y_{bc} = neutral axis of bottom chord, in. (mm)
- a = depth of compression block = $\frac{\bar{\alpha} s A_b F_{y}}{\sigma_c f'_c b_e}$, in. (mm)
- $\bar{\alpha}_s = 0.9$
- A_b = area of bottom chord, in.2 (mm2)
- F_{y} = yield stress of steel, ksi (MPa)
- $a_i = 0.85$
- $\sigma_c = 0.65$
- f'_c = concrete compressive strength, ksi (MPa)
- b_e = effective width of concrete, in. (mm)

The factored resisting moment can then be compared to the factored moment:

$$ M_f = \frac{W_f L^2}{8} $$

Where:

- W_f = total factored uniform load, plf (kN/m)
- L = span of joist, ft. (m)

1 Denis BEAULIEU and André PICARD. Calcul des charpentes d’acier : Tome II, Chapitre IX – Poutres mixtes. Markham, Ontario, Institut canadien de la construction en acier (ICCA), 2010. (French only)
Web design

Vertical shear

The web of the steel joist is designed according to CAN/CSA-S16, clause 17.3.2, requires the web system to be proportioned to carry the total vertical shear \(V_f \).

According to clause 16.5.1, the loading applied to the joist is as follows:

1. The total factored dead and live loads specified by the building designer.
2. The total dead load and an unbalanced load of 100\% of the live load on any continuous portion of the joist and 0\% of the live load on the remainder to produce the most critical effect on any component.
3. Factored dead load plus the appropriate factored concentrated load from the NBCC applied at any panel point to produce the most critical effect on any web members.

The above loadings do not need to be applied simultaneously.

Tension and compression diagonal

The web members are sized for the specified loading including concentrated loads where applicable.

The effective length of web member \(K_l \) is taken from the top chord neutral axis to the bottom chord neutral axis.

![Diagram of D500 web member]

For webs in tension, the slenderness ratio is not limited (clause 16.5.8.5), they are dimensioned using clause 13.2; generally this formula controls:

\[
T_r = \frac{\sigma A_g F_y}{E} \]

For webs in compression, the slenderness ratio shall not exceed 200 (clause 16.5.8.6); they are dimensioned using clause 13.3. Rods are used, therefore this equation applies:

\[
C_r = \frac{\sigma A_x F_y (1+\frac{\lambda^2}{K_{ls}})}{(1+\frac{\lambda^2}{K_{ls}})^{1/3}}
\]

Where:

\[
\lambda = \sqrt{\frac{F_r}{F_y}}
\]

\[
F_r = \frac{x^2 E}{(K_{ls})^2} \cdot k si (MPa)
\]
Hambro D500 Composite Floor System

Interface shear
The Hambro joist comprises a composite concrete slab-steel joist system with composite action achieved by the shear connection developed by two mechanisms:

1. Horizontal bearing forces
 The bearing shoe of the joist consists of angles that are embedded in the concrete. They act as an anchorage for the first diagonal member producing a horizontal bearing force when the joist is loaded.

2. Steel/concrete interface
 Once embedded in the slab, the top chord bonds with the concrete in order to provide a shear-friction resistance. There are also holes in the “S” part of the top chord, which help reinforce the bond between the steel/concrete interface.

Shear resistance of the steel/concrete interface can be evaluated by either elastic or ultimate strength procedures; both methods have shown good correlation with the test results. The interface shear force resulting from superimposed loads on the composite joist may be calculated, using the “elastic approach” by the equation:

\[q = \frac{VQ}{I_c} \]
Where:

\(q \) = horizontal shear flow, lb./in. (N/mm)

\(V \) = vertical shear force due to superimposed loads, lb. (N)

\(I_c \) = moment of inertia of the composite joist, in.\(^2\) (mm\(^4\))

\(Q \) = statical moment of the effective concrete in compression

\((\text{hatched area}) \) about the elastic neutral axis of the composite section, in.\(^2\) (mm\(^4\))

\(= (byhn) (Y_c - y/2) \) and \(y = y_c \leq t \)

\(b_e \) = effective concrete width, in. (mm)

\(n \) = modular ratio

\(= E/E_c = 9.4 \) (for \(f'_c = 3 \) ksi (20 MPa))

\(t \) = slab thickness, in. (mm)

\(Y_c \) = depth of neutral axis from top of concrete slab, in. (mm)

\(y \) = neutral axis of composite joist, in. (mm)

\(= Y_c \rightarrow \text{when elastic neutral axis lies within slab} \)

\(= t \rightarrow \text{when elastic neutral axis lies outside slab} \)

Case 1: N.A. within the slab \((y = Y_c)\)

Case 2: N.A. outside the slab \((y = t)\)
The most recent full testing programs have consistently established a failure value for the horizontal bearing forces and the friction between steel and concrete. An additional contributing factor is a hole in the section at each 7 in. (178 mm) on the length.

1. Horizontal bearing forces
 The test has defined an ultimate value for the end bearing shoe equal to 50 kip (222 kN) for a concrete strength of 3 ksi (20 MPa).

2. Friction between concrete and top chord
 The failure value for the interface shear is 255 lb./in. (44.7 N/mm).

Slab design

Note: The calculations attached to slab design are metric only.

The slab component of the D500 Hambro composite floor system behaves as a one-way slab carrying loads transversely to the joists. The slab design is based on CAN/CSA-A23.3, Design of Concrete Structures. This standard stipulates that in order to provide adequate safety level, the factored effects shall be less than the factored resistance.

Uniform load – load distribution

Continuous span

The standard CAN/CSA-A23.3, clause 9.2.3.1, requires that factored dead load to act simultaneously with the factored live load apply on:

- Adjacent spans (maximum negative moment at support); or
- Alternate spans (maximum positive moment at mid-span).

If criteria (a) to (e) of clause 9.3.3 are satisfied, the following approximate value may be used in the design of one-way slabs. Refer to figure below for location of moments and shear efforts.
1. Positive moment
 Exterior span (location 1): \(M_f = \frac{W_f L_1^2}{11} \)
 Interior span (location 3): \(M_f = \frac{W_f L_i^2}{16} \)

2. Negative moment
 First interior support (location 2): \(M_f = \frac{W_f L_a^2}{10} \)
 Other interior support (location 4): \(M_f = \frac{W_f L_a^2}{11} \)

Shear
 Face of first interior support (location 2): \(V_f = 1.15 \frac{W_f L_1}{2} \)
 Other interior support (location 4): \(V_f = \frac{W_f L_i}{2} \)

Where:
\(W_f = \text{total factored design load} \ (kN/m) \)
\(L_1 = \text{first exterior span} \ (m) \)
\(L_i = \text{interior spans \rightarrow joists spacing} \ (m) \)
\(L_a = \text{average of two adjacent spans} \ (m) \)

Single span
However, if at least one of the criteria of CAN/CSA-A23.3, clause 9.3.3, is not met, the slab must be considered as simply supported and the distribution of forces will be as follow (refer to the figure on page 32 for location of moment and shear):

1. Positive moment
 All spans (locations 1 and 3): \(M_f = \frac{W_f L_i^2}{8} \)

2. Shear
 All supports: \(V_f = \frac{W_f L_i}{2} \)

Concentrated load – load distribution
In addition to the previous verification, the Division B of the National Building Code of Canada (NBCC), clause 4.1.5.9 1), requires consideration for a minimum concentrated live load to be applied over a specified area. The magnitude of the load depends on the occupancy. This loading does not need to be considered to act simultaneously with the specified uniform live load.

The area of an applied concentrated load on the slab can be distributed laterally to reduce its intensity. Since the Canadian codes and standards do not provide a precise method, the following calculations for the effective widths of concentrated load, \(b_e \), are based on the SDI approach. CSSBI standard 12M-15 states that for special cases not covered, it is possible to refer to other standards.

1. For moment calculation:
 \(b_e = b_m + \frac{4}{3} (1 - \frac{x}{L_i}) x \leq 106.8 \ (t/h) \)

2. For shear calculation:
 \(b_e = b_m + (1 - \frac{x}{L_i}) x \)

Where:
\(b_e = \) effective width (mm)
\(b_m = \) load width (mm)
\(t_s = \) slab thickness (mm)
Hambro D500 Composite Floor System

Concentrated load distribution for effective width

Projected width of concentrated load
Moment capacity

The factored moment resistance \((M_r) \) of a reinforced concrete section, using an equivalent rectangular concrete stress distribution is given by (CAN/CSA-A23.3, clause 10.1.7):

\[
M_r = \emptyset_s A_s F_y (d - a/2)
\]

\[
a = \frac{\emptyset_s A_s F_y}{a \emptyset_c f'_c b}
\]

\[
a_t = 0.85 - 0.0015 f'_c \geq 0.67
\]

Where:
- \(a \) = depth of the equivalent concrete stress block (mm)
- \(F_y \) = yield strength of reinforcing steel (450 MPa min.)
- \(f'_c \) = compressive strength of concrete (20 MPa min.)
- \(A_s \) = area of reinforcing steel in the direction of analysis (mm²/mm width)
- \(b \) = unit slab width (mm)
- \(d' \) or \(d \) = distance from extreme compression fiber to centroid of tension reinforcement (mm)
- \(t \) = thickness of the slab (mm)
- \(\emptyset_s \) = performance factor of reinforcing steel (0.85)
- \(\emptyset_c \) = performance factor of concrete (0.65)
Shear capacity

The shear stress capacity (V_r), which is a measure of diagonal tension, is unaffected by the embedment of the top chord section as this principal tensile crack would be angled and radiate away from the top chord. The factored shear capacity is given by CAN/CSA-A23.3, clause 11.3.4:

$$V_r = V_c = \phi \beta f' cb w d v$$

Where:

- $\lambda = 1$ (for normal density concrete)
- $\beta = \frac{230}{(1000 + d_v)}$
- $d_v = 0.9 d^+ or 0.9 d^- \geq 0.72 t$ (mm)
- d^+ or d^- = distance from extreme compression fiber to centroid of tension reinforcement (mm)
- $b_w = b = width of the slab (mm)$

Serviceability limit states

Crack control parameter

When the specified yield strength, F_y for tension reinforcement exceeds 300 MPa, cross sections of maximum positive and negative moments shall be so proportioned that the quantity Z does not exceed 30,000 N/mm for interior exposure and 25,000 N/mm for exterior exposure. Refer to CAN/CSA-A23.3, clause 10.6.1.

The quantity Z limiting distribution of flexural reinforcement is given by:

$$Z = f_s \sqrt{d \Lambda}$$
Where:

\[f_s = \text{stress in reinforcement at specified loads taken as 0.6 } f' \text{ (MPa)} \]
\[d_c = \text{thickness of concrete cover measured from extreme tension fibre to the center of the reinforcing bar located closest there to} \leq 50 \text{ mm} \]
\[A = 2 \times d_c \times \text{wire mesh spacing (mm)} \]

Crack control parameter

Deflection control

For one-way slabs not supporting or attached to partitions of other construction likely to be damaged by large deflections, deflection criteria are considered to be satisfied if the following span/depth ratios are met (CAN/CSA-A23.3, Table 9.2):

- Exterior span: \(t \geq L_i/24 \)
- Interior span: \(t \geq L_i/28 \)

Where:

\[L_i = \text{spacing between joists (mm)} \]

Slab design example

Verify the standard Hambro slab under various limit states (strength and serviceability) for residential loading.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead load</td>
<td>3.1 kPa</td>
</tr>
<tr>
<td>Live load</td>
<td>1.9 kPa</td>
</tr>
<tr>
<td>Concentrated load</td>
<td>4.5 kN on 750 mm x 750 mm everywhere</td>
</tr>
<tr>
<td>Slab thickness (t)</td>
<td>76 mm</td>
</tr>
<tr>
<td>Joists spacing (L_i)</td>
<td>1,250 mm</td>
</tr>
<tr>
<td>Concrete strength ((f'_c))</td>
<td>20 MPa</td>
</tr>
<tr>
<td>Wire mesh</td>
<td>152 x 152 MW25.7 x MW25.7</td>
</tr>
<tr>
<td>Area of steel (A_s)</td>
<td>170 mm²/mm</td>
</tr>
<tr>
<td>Wire mesh diameter</td>
<td>5.74 mm</td>
</tr>
</tbody>
</table>
1. Loads and efforts per meter of slab

Factored load
\[W_f = 1.25 \times 3.1 + 1.5 \times 1.9 = 6.73 \text{ kN/m}^2 \]

Maximum positive moment at location 1
\[M_f^+ = \frac{6.73 \times 1.25^2}{11} \times 1 \text{ m} = 0.96 \text{ kNm} \]

Maximum negative moment at location 2
\[M_f^- = \frac{6.73 \times 1.25^2}{10} \times 1 \text{ m} = 1.05 \text{ kNm} \]

Maximum shear
\[V_f = \frac{-6.73 \times 1.15 \times 1.25}{2} = 4.84 \text{ kN} \]

2. Resistance under uniform load

Positive moment capacity
\[d^+ = t - 38.1 \text{ mm} - \frac{\varnothing_{res}}{2} \]
\[d^+ = 76 - 38.1 - \frac{5.74}{2} = 35.03 \text{ mm} \]
\[a_t = 0.85 - 0.0015 \times 20 = 0.82 \geq 0.67 \rightarrow \text{OK} \]
\[a = \frac{\varnothing \cdot A \cdot f_c}{a_t \cdot f'_c \cdot b} = \frac{0.85 \times 170 \times 450}{0.82 \times 0.65 \times 20 \times 1,000} = 6.1 \text{ mm} \]
\[M_f^+ = \varnothing \cdot A \cdot f_c \cdot (d^+ - a/2) = 0.85 \times 170 \times 450 \times (35.03 - 6.1/2) = 2.08 \text{ kNm} > M_f^+ = 0.96 \text{ kNm} \rightarrow \text{OK} \]

Negative moment capacity
\[d^- = t - d^+ \]
\[d^- = 76 - 35.03 = 40.97 \text{ mm} \]
\[a_t = 0.85 - 0.0015 \times 20 = 0.82 \geq 0.67 \rightarrow \text{OK} \]
\[a = \frac{\varnothing \cdot A \cdot f_c}{a_t \cdot f'_c \cdot b} = \frac{0.85 \times 170 \times 450}{0.82 \times 0.65 \times 20 \times 1,000} = 6.1 \text{ mm} \]
\[M_f^- = \varnothing \cdot A \cdot f_c \cdot (d^- - a/2) = 0.85 \times 170 \times 450 \times (40.97 - 6.1/2) = 2.47 \text{ kNm} > M_f^- = 1.05 \text{ kNm} \rightarrow \text{OK} \]

Shear capacity
\[d_s = 0.9 \times d^+ \geq 0.72 \times 0.9 \times 40.97 \times 76 \rightarrow 36.87 \text{ mm} \geq 54.72 \text{ mm} \rightarrow d_s = 54.72 \text{ mm} \]
\[\beta = \frac{230}{(1,000 + d_s)} = \frac{230}{(1,000 + 54.72)} = 0.218 \]
\[V_f = \varnothing \cdot A \cdot \beta \cdot f'_c \cdot b \cdot d_s \]
\[V_f = 0.65 \times 1 \times 0.218 \times 20 \times 1,000 \times 54.72 = 34.68 \text{ kN} > V_f = 4.84 \text{ kN} \]
3. Resistance under concentrated load

Refer to table Slab capacity under concentrated load on page 24.

The slab can carry a dead load of 5 kPa which is higher than the specified loads of 3.1 kPa. Then, the reinforcement is ok.

4. Serviceability

Crack control

\[
d_c = \max \left[t - 38.1 - \phi_{recd}/2; 38.1 + \phi_{recd}/2 \right]
\]

\[
d_c = \max \left[76 - 38.1 - 5.74/2; 38.1 + 5.74/2 \right] = \max \left[35.03; 40.97 \right] = 40.97 \text{ mm}
\]

\[
A = 2 \times d_c \times \text{wire mesh spacing}
\]

\[
A = 2 \times 40.97 \times 152 = 12,454.88 \text{ mm}^2
\]

\[
f_s = 0.6 F_y
\]

\[
f_s = 0.6 \times 450 = 270 \text{ MPa}
\]

\[
Z = f_s \sqrt{d_c A}
\]

\[
Z = 270 \sqrt{40.97 \times 12,454.88} = \frac{21,576 \text{ N}}{\text{mm}} < \frac{30,000 \text{ N}}{\text{mm}} \rightarrow \text{OK}
\]

Deflection control

\[
\frac{\text{span}}{\text{depth}} = \frac{1.251}{76} = 0.01646
\]

Exterior span: \(t \geq \frac{L_e}{24} \rightarrow t \geq 0.01646 \times 52.13 > 16.46 \rightarrow \text{OK} \)

Interior span: \(t \geq \frac{L_i}{28} \rightarrow t \geq 0.01646 \times 44.68 > 16.46 \rightarrow \text{OK} \)

DIAPHRAGM

Note: The calculations attached to diaphragm design are metric only.

THE HAMBRO SLAB AS A DIAPHRAGM

With the increasing use of the Hambro system for floor-building in earthquake or in hurricane prone areas as well as for multi-story buildings where shear transfer could occur at some level of the building due to the reduction of the floor plan, it is important to develop an understanding of how the slabs will be able to transmit horizontal loads while being part of the Hambro floor system.

The floor slab, part of the Hambro system, must be designed by the project structural engineer as a diaphragm to resist horizontal loads and transmit them to the vertical lateral resisting system. Take note that the Hambro joist doesn’t transfer lateral loads and that drag struts or connectors should be designed in order to transfer these loads to the perimeter elements. The Canam engineering team is available for technical support for diaphragm design.

A diaphragm works as the web of a beam spanning between or extending beyond the supports. In the case of a floor slab, the slab is the web of the beam spanning between or extending beyond the vertical elements designed to transmit to the foundations the horizontal loads produced by earthquake or wind.

Any diaphragm has the following limit states:

1. Shear strength between the supports;
2. Out of plane buckling;
3. In plane deflection of the diaphragm;
4. Shear transmission at the supports.
We will use a simple example of wind load acting on a diaphragm part of a horizontal beam forming a single span between end walls. The structural engineer responsible for the design of the building shall establish the horizontal loads that must be resisted at each floor of the building for the wind and earthquake conditions prevailing at the building location. The structural engineer must also identify the vertical elements that will transmit the horizontal loads to the foundations in order to calculate the shear that must be resisted by the floor slab.

Shear strength between supports

A series of fourteen specimens of concrete slabs, part of a Hambro D500 floor system, were tested in the Carleton University’s laboratories in Ottawa. The purpose of the tests was to identify the variables affecting the in-plane shear strength of the concrete slab reinforced with welded wire mesh.

The specimens were made of slabs with a concrete thickness of 64 mm or 68 mm forming a beam with a span of 610 mm and a depth of 610 mm. This beam was loaded with two equal concentrated loads at 152 mm from the supports. The other variables were:

1. The size of the wire mesh;
2. The presence or absence of the Hambro joist’s embedded top chord parallel to the load in the shear zone;
3. The concrete strength.

It was found that the shear resistance of the slab is minimized when the shear stress is parallel to the Hambro joist’s embedded top chord. A conservative assumption could be made that the concrete confined steel wire mesh is the only element that will transmit the shear load over the embedded top chord. In other cases, the shear forces are taken up by the reinforced concrete slab and calculated by the structural engineer responsible for the design of the building.

As recommended in the report produced as a result of tests conducted at the Carleton University, in the following example of the design procedure, we will take into account that the steel wire mesh is already under tension stress produced by the continuity of the slab over the Hambro joist, and that the remaining capacity of the steel wire mesh will be the limiting factor for the shear strength of the slab over the Hambro joist.

Design example

The diaphragm example (see figure on page 41) illustrates a simple building with a slab in diaphragm. Hambro system values are taken from the slab design example on page 37. Other necessary values are listed below.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total wind pressure load from leeward and windward faces (W)</td>
<td>1.2 kPa</td>
</tr>
<tr>
<td>Story height (h_s)</td>
<td>3.7 m</td>
</tr>
<tr>
<td>Span of the beam with the floor slab acting as web (L_t)</td>
<td>35.5 m</td>
</tr>
<tr>
<td>Length of the bearing elements parallel to the horizontal force (B)</td>
<td>18.3 m</td>
</tr>
</tbody>
</table>
1. Non-factored moments

The ending moment over the embedded top chord is calculated for one meter width. In using the data from the slab design example, the non-factored moments for a joist with a spacing of 1,251 mm is:

\[M_d = \frac{3.1 \text{kPa} \times 1.251^2}{10} \times 1 \text{m} = 0.49 \text{kNm} \]

\[M_L = \frac{1.9 \text{kPa} \times 1.251^2}{10} \times 1 \text{m} = 0.30 \text{kNm} \]

2. Bending moment in the slab between joists due to gravity loads

The lever arm between the compression concrete surface and the tension steel of the wire mesh at the top chord allows us to calculate the factored bending capacity of the slab to be \(M_r^c = 2.47 \text{kNm} \).

3. Horizontal shear

We can establish the horizontal shear that the floor diaphragm will have to resist in order to transfer the horizontal load from the walls facing the wind to the perpendicular walls where a vertical lateral resisting system will bring that load down to the foundation.

For the purpose of our example, the factored wind load is the maximum horizontal load calculated according to the provisions of the local building code, but earthquake load shall also be calculated by the structural design engineer of the project and the maximum of the two loads should be used in the calculation.

\[V_w = h \cdot W \cdot \frac{L_t}{2} \]

\[= 3.7 \times 1.2 \times \frac{35.5}{2} \]

\[= 78.8 \text{kN} \]

In our example, the end reaction is distributed along the whole length (18.3 m) of the end wall used to transfer the load.

\[q_v = \frac{78.8}{18.3} \]

\[= 4.3 \text{kN/m} \]
4. Steel shear capacity

To establish the shear capacity of steel wire mesh for a slab unit width of one meter, we use the following formula adapted from CSA-A23.3, clause 11.5, and simplify it to calculate the resistance of the reinforcing steel only, considering a shear crack developing at a 45 degree angle and intersecting the wire mesh in both directions.

\[
q_r = \phi A_r F_y \cos 45^\circ
\]

\[
= (0.85 \times 2 \times 170 \times 450 \times \cos 45^\circ)/1,000
\]

\[
= 91.96 \text{ kN/m}
\]

The steel area is multiplied by two since the crack is developing at a 45 degree angle, crossing both directions of the wire mesh.

5. Interaction formulas

Considering the reduction factor from the NBCC for the simultaneity of gravity live load and horizontal wind load for our example, the structural engineer of the project needs to verify the diaphragm capacity of the floor slab and its reinforcement by verifying that the moment and shear interaction formulas used below are less than unity:

Load Combination 1:

\[
1.25 \frac{M_r}{M_e} + 1.5 \frac{M_r}{M_e} \leq 1
\]

\[
1.25 \frac{0.49}{2.47} + 1.5 \frac{0.30}{2.47} = 0.43 \leq 1 \rightarrow \text{OK (Doesn’t control)}
\]

Load Combination 2:

\[
1.25 \frac{M_r}{M_e} + 1.5 \frac{M_r}{M_e} + 0.4 \frac{q_r}{q_r} \leq 1
\]

\[
1.25 \frac{0.49}{2.47} + 1.5 \frac{0.30}{2.47} + 0.4 \frac{4.3}{91.96} = 0.45 \leq 1 \rightarrow \text{OK (Controls)}
\]

Load Combination 3:

\[
1.25 \frac{M_r}{M_e} + 0.5 \frac{M_r}{M_e} + 1.4 \frac{q_r}{q_r} \leq 1
\]

\[
1.25 \frac{0.49}{2.47} + 0.5 \frac{0.30}{2.47} + 1.4 \frac{4.3}{91.96} = 0.37 \leq 1 \rightarrow \text{OK (Doesn’t control)}
\]

These verifications indicate that the wire mesh embedded in the slab would provide enough shear strength to transfer those horizontal loads over the Hambro joist.

Out of plane buckling

The floor slab, when submitted to a horizontal shear load, may tend to buckle out of plane like a sheet of paper being twisted. The minimum thickness of Hambro concrete slab of 76 mm is properly held in place by the Hambro joists spaced at a maximum of 1,555 mm and which are attached at their ends to prevent vertical movement. The buckling length of the slab itself will then be limited to the spacing of the joist and the buckling of a floor will normally not be a factor in the design of the slab as a diaphragm.

In plane deflection of the diaphragm

As for every slab used as a diaphragm, the deflection of the floor as a horizontal member between the supports provided by the vertical bracing system shall be investigated by the structural engineer of the building to verify that the horizontal deflection remains within the allowed limits.

Beam effect

The structural engineer of the project shall indicate the required steel reinforcement on his drawings according to the beam effect calculations.

Shear transmission to the vertical bracing system

The structural engineer of the project shall design and indicate on his drawings proper methods and/or reinforcement to attach the slab to the vertical bracing system over such a length as to prevent local overstress of the slab capacity to transfer shear.
ENGINEERING TYPICAL DETAILS – HAM BRO D500 (H SERIES)

DETAIL 1

D500
STANDARD SHOE

DETAIL 2

STANDARD SHOE / MINI-JOIST

DETAIL 3

BOLTED JOIST ON STEEL COLUMN (FLANGE / WEB)

* WHEN DEEP SHOE, THE c/c OF HOLE IS DIFFERENT, CONSULT THE APPROPRIATE DETAILS ON PLAN.
Hambro D500 Composite Floor System

DETAIL 4

BOLTED JOIST ON INTERIOR STEEL BEAM

<table>
<thead>
<tr>
<th>NOMINAL JOIST DEPTH</th>
<th>SLAB T+1/4 (6 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOIST SHOE ANCHORED TO SUPPORT WITH TAPCON CONCRETE SCREW OR EQUIVALENT 1/4" x 1 1/2" (6x44 mm) LENGTH MIN.</td>
<td></td>
</tr>
<tr>
<td>FILLED MASONRY OR BOND BEAM</td>
<td></td>
</tr>
<tr>
<td>JOIST SHOE ANCHORED TO SUPPORT WITH TAPCON CONCRETE SCREW OR EQUIVALENT 1/4" x 1 1/2" (6x44 mm) LENGTH MIN.</td>
<td></td>
</tr>
<tr>
<td>FILLED MASONRY OR BOND BEAM</td>
<td></td>
</tr>
<tr>
<td>CEILING EXTENSION</td>
<td></td>
</tr>
</tbody>
</table>

NOTE:
STAGGERED JOISTS, IF THE FLANGE BEAM IS LESS THAN 8" (203 mm).* WHEN DEEP SHOE, THE c/c OF HOLE IS DIFFERENT, CONSULT THE APPROPRIATE DETAILS ON PLAN.

T+1/4" (6 mm) = SLAB THICKNESS + SHOE THICKNESS

DETAIL 5

JOIST BEARING ON EXTERIOR MASONRY OR CONCRETE WALL

3/4" (89 mm) MIN. BEARING FOR 4" (102 mm) SHOE (TYP.)

T+3/4" (6 mm) = SLAB THICKNESS + SHOE THICKNESS
DETAIL 6

JOIST BEARING ON INTERIOR MASONRY OR CONCRETE WALL

CÉILING EXTENSION (TYP.)

JOIST SHOE ANCHORED TO SUPPORT WITH TAPCON CONCRETE SCREW OR EQUIVALENT 1/4" x 3/4" (6 x 44 mm) LENGTH MIN.

3/4" (89 mm) MIN. BEARING FOR 4" (102 mm) SHOE (TYP.)

FILLED MASONRY OR BOND BEAM

T+1/4" (6 mm) = SLAB THICKNESS + SHOE THICKNESS

NOTE:
STAGGERED JOISTS, IF THE WALL IS LESS THAN 8" (203 mm).

DETAIL 7

JOIST BEARING ON EXTERIOR INSULATED CONCRETE WALL

3/4" (89 mm) MIN. BEARING FOR 4" (102 mm) SHOE (TYP.)

JOIST SHOE ANCHORED TO SUPPORT WITH TAPCON CONCRETE SCREW OR EQUIVALENT 1/4" x 3/4" (6 x 44 mm) LENGTH MIN.

T+1/4" (6 mm) = SLAB THICKNESS + SHOE THICKNESS
DETAIL 8

JOIST BEARING ON INTERIOR INSULATED CONCRETE WALL

<table>
<thead>
<tr>
<th>JOIST DEPTH (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 1/2" (89 mm) MIN. BEARING FOR 4" (102 mm) SHOE (TYP.)</td>
</tr>
</tbody>
</table>

- Joist shoe anchored to support with Tapcon concrete screw or equivalent
- \(\phi 1/4\times13/4" (6x44 mm) \) length min.

\[T+1/4" (6 mm) = \text{SLAB THICKNESS} + \text{SHOE THICKNESS} \]

NOTE:
- Staggered joists, if the wall is less than 8" (203 mm).

DETAIL 9

JOIST BEARING ON EXTERIOR STEEL BEAM

<table>
<thead>
<tr>
<th>JOIST DEPTH (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 1/2" (89 mm) MIN. BEARING FOR 4" (102 mm) SHOE (TYP.)</td>
</tr>
<tr>
<td>2 1/2" (64 mm) MIN. BEARING FOR 3" (76 mm) SHOE (TYP.)</td>
</tr>
</tbody>
</table>

- Pour stop
- \(3/16" (5 \text{ mm}) \)
- \(1/2" (38 \text{ mm}) \)

\[T+1/2" (6 mm) = \text{SLAB THICKNESS} + \text{SHOE THICKNESS} \]
DETAIL 10

JOIST BEARING ON INTERIOR STEEL BEAM

T+1/8" (6 mm) = SLAB THICKNESS + SHOE THICKNESS

NOTE:
STAGGERED JOISTS, IF THE FLANGE BEAM IS LESS THAN 8" (203 mm).

DETAIL 11

JOIST BEARING ON INTERIOR STEEL STUD WALL

T+1/8" (6 mm) = SLAB THICKNESS + SHOE THICKNESS
DETAIL 12
JOIST BEARING ON INTERIOR STEEL STUD WALL

T+1/2" (6 mm) = SLAB THICKNESS + SHOE THICKNESS

NOTE:
STAGGERED JOISTS, IF THE WALL IS LESS THAN 8" (203 mm).

DETAIL 13
JOIST BEARING ON EXTERIOR STEEL STUD WALL

T+1/2" (6 mm) = SLAB THICKNESS + SHOE THICKNESS

NOTE:
STAGGERED JOISTS, IF THE WALL IS LESS THAN 8" (203 mm).
DETAIL 14
JOIST BEARING ON EXTERIOR WOOD STUD WALL

JOIST SHOE ANCHORED TO PLANK WITH TWO WOOD SCREWS #12 OR NAILS

3 1/2” (89 mm) MIN. BEARING FOR 4” (102 mm) SHOE (TYP.)

T+1/4” (6 mm) = SLAB THICKNESS + SHOE THICKNESS

DETAIL 15
JOIST BEARING ON INTERIOR WOOD STUD WALL

JOIST SHOE ANCHORED TO PLANK WITH TWO WOOD SCREWS #12 OR NAILS

3 1/2” (89 mm) MIN. BEARING FOR 4” (102 mm) SHOE (TYP.)

T+1/4” (6 mm) = SLAB THICKNESS + SHOE THICKNESS

NOTE:
STAGGERED JOISTS, IF THE WALL IS LESS THAN 8” (203 mm).
DETAIL 16
EXPANSION JOINT AT ROOF
(STEEL BEAM)

DETAIL 17
EXPANSION JOINT AT ROOF
DETAIL 18
MINIMUM CLEARANCE OPENING AND HOLE IN THE SLAB

OPENING (SEE STANDARD REINFORCEMENT FOR SLAB OPENING)

NO ADDITIONAL REINFORCEMENT REQUIRED, IF:
- MINIMUM DISTANCE C/C OF DRILLED HOLES IS 2'-0" (610 mm) AND:
- ONLY ONE STRAND OF STEEL PERPENDICULAR TO JOISTS IS CUT PER HOLE.
IF NOT: SEE STANDARD REINFORCEMENT FOR SLAB OPENING

END OF SLAB

REBARS SHOULD BE PLACED AROUND SLAB OPENING

JOIST

JOIST

IF SLAB OPENING IS:
- LESS THAN 1'-5" (430 mm), REINFORCE THE AREA WITH AN ADDITIONAL LAYER OF WIRE MESH LAPPED 1'-0" (305 mm) ALL AROUND OPENING
- 1'-5" (430 mm) OR MORE, FOLLOW THE ENGINEER OF RECORDS DETAIL.

STANDARD REINFORCEMENT FOR SLAB OPENING
Hambro D500 Composite Floor System

DETAIL 19

JOIST PARALLEL TO EXPANSION JOINT

- \(\frac{1}{2} '' \) (5 mm) TAPCON CONCRETE FASTENERS OR EQUIVALENT @ 24'' (610 mm) c/c (MAX.)
- ANCHORED \(\frac{3}{4} '' \) (19 mm) DEEP

CONCRETE, ICF, WOOD OR MASONRY WALL

\(T + \frac{1}{2} '' \) (6 mm) = SLAB THICKNESS + SHOE THICKNESS

DETAIL 20

JOIST PARALLEL TO A MASONRY OR CONCRETE WALL

- \(\frac{3}{16} '' \) (5 mm) TAPCON CONCRETE FASTENERS OR EQUIVALENT @ 24'' (610 mm) c/c (MAX.)
- ANCHORED \(\frac{3}{8} '' \) (19 mm) DEEP

FLANGE HANGER (TYPE F.H.)

\(\frac{1}{2} '' \) (13 mm)

\(T + \frac{1}{2} '' \) (6 mm) = SLAB THICKNESS + SHOE THICKNESS
DETAIL 21
JOIST PARALLEL TO INSULATED CONCRETE WALL

- \(\frac{3}{8}'' (5 \text{ mm}) \) TAPCON CONCRETE FASTENERS
 OR EQUIVALENT @ 24'' (610 mm) c/c (MAX.)
 ANCHORED \(\frac{3}{8}'' (19 \text{ mm}) \) DEEP

\[T + \frac{1}{2}'' (6 \text{ mm}) = \text{SLAB THICKNESS} + \text{SHOE THICKNESS} \]

DETAIL 22
JOIST PARALLEL TO A STEEL BEAM

HILTI STEEL DECK FASTENERS:
- HSN24 FOR \(\frac{1}{8}'' (3 \text{ mm}) < t < \frac{3}{8}'' (10 \text{ mm}) \)
- EPN19 FOR \(t > \frac{3}{8}'' (6 \text{ mm}) \)
 \(t \) = MINIMUM THICKNESS OF THE SUPPORTING STEEL

SELF-TAPPING FASTENERS:
- OR @ 12'' (305 mm) c/c

\[\frac{3}{8}'' (19 \text{ mm}) \]
\[24'' (610 \text{ mm}) \]

FLANGE HANGER
(TYPE F.H.)
(SEE SPECIAL NOTE)

\[T + \frac{1}{2}'' (6 \text{ mm}) = \text{SLAB THICKNESS} + \text{SHOE THICKNESS} \]

SPECIAL NOTE:
IF THE FLANGE THICKNESS IS MORE THAN \(\frac{1}{8}'' (17 \text{ mm}) \), INSTALL
THE FLANGE HANGER AT \(\frac{3}{8}'' (13 \text{ mm}) \) TO THE FACE OF FLANGE.
DETAIL 23
JOIST PARALLEL TO A STEEL STUD WALL

HILTI STEEL DECK FASTENERS:
- HSN24 FOR \(\frac{3}{8}'' \) (3 mm) < \(t \) < \(\frac{3}{8}'' \) (10 mm)
- EPN19 FOR \(t \geq \frac{3}{8}'' \) (6 mm)
\(t = \) MINIMUM THICKNESS OF THE SUPPORTING STEEL

SELF TAPPING FASTENERS OR
@ 12" (305 mm) c/c

\(\frac{3}{4}'' \) (19 mm)
\((610 \text{ mm}) \)

FLANGE HANGER (TYPE F.H.)
\(\frac{3}{8}'' \)
\((13 \text{ mm}) \)

\(T\frac{3}{4}'' \) (6 mm) = SLAB THICKNESS + SHOE THICKNESS

DETAIL 24
JOIST PARALLEL TO A WOOD WALL

\(\Phi \frac{1}{5}'' \) (5 mm) TAPCON CONCRETE FASTENERS
OR EQUIVALENT @ 24" (610 mm) c/c (MAX.)
ANCHORED \(\frac{3}{4}'' \) (19 mm) DEEP

\(\frac{3}{8}'' \)
\((13 \text{ mm}) \)

\(T\frac{3}{4}'' \) (6 mm) = SLAB THICKNESS + SHOE THICKNESS
DETAIL 25

DEEP SHOE TO SUIT SLAB THICKNESS

- Joist shoe anchored according to CANAM specifications.
- 3/4" (89 mm) min. bearing for 4" (102 mm) shoe (typ.)
- Ceiling extension (typ.)

DETAIL 26

THICKER SLAB

- The hanger plate is used to thicken the underside of the concrete slab.
- Four different standards thickness slab can be considered with the hanger plate (see detail).
DETAIL 27
MINI-JOIST AT CORRIDOR

BEARING DETAILS ACCORDING TO CANAM SPECIFICATIONS

$\frac{3}{8}$" (89 mm) MIN. BEARING FOR 4" (102 mm) SHOE (TYP.)

CONCRETE, ICF, WOOD, MASONRY WALL, STEEL BEAM OR STEEL STUD WALL

$T+\frac{1}{2}$" (6 mm) = SLAB THICKNESS + SHOE THICKNESS

DETAIL 28
MINI-JOIST WITH HANGER PLATE AT CORRIDOR

BEARING DETAILS ACCORDING TO CANAM SPECIFICATIONS

$\frac{3}{8}$" (89 mm) MIN. BEARING FOR 4" (102 mm) SHOE (TYP.)

CONCRETE, ICF, WOOD, MASONRY WALL, STEEL BEAM OR STEEL STUD WALL

$T+\frac{1}{2}$" (6 mm) = SLAB THICKNESS + SHOE THICKNESS

NOTE:
STAGGERED JOISTS, IF THE SUPPORT ELEMENT IS LESS THAN 8" (203 mm).
DETAIL 30

FLANGE HANGER FOR BEAM AND WALL

HILTI STEEL DECK FASTENERS:
- HSN24 FOR \(\frac{3}{8}'' \) (3 mm) \(< t < \frac{3}{8}'' \) (10 mm)
- EPN19 FOR \(t > \frac{3}{8}'' \) (6 mm)
\(t = \text{MINIMUM THICKNESS OF THE SUPPORTING STEEL} \)

OR

SELF TAPPING FASTENERS
\(@ \ 12'' \) (305 mm) c/c

OR

\(\frac{3}{4}'' \) (19 mm)
\(24'' \) (610 mm)

FLANGE HANGER
(TYPE F.H.)

CONCRETE, ICF, WOOD, MASONRY WALL,
STEEL BEAM OR STEEL STUD WALL

SPECIAL NOTE:
IF THE FLANGE THICKNESS IS MORE THAN \(\frac{1}{2}'' \) (17 mm), INSTALL THE FLANGE HANGER AT \(\frac{1}{2}'' \) (13 mm) TO THE FACE OF FLANGE.

NOTE:
IF THERE IS A JOIST SITTING ON THE HEADER BEAM,
THE DIMENSION \(\frac{1}{2}'' \) (38 mm) WILL Become \(\frac{1}{2}'' \) (44 mm) AND
“T” WILL BECOME “T+\frac{1}{2}'' \) (6 mm) = SLAB THICKNESS + SHOE THICKNESS”.

HEADER SUPPORT

HEADER BEAM (SEE PLAN)
DESIGNED AND DETAILED BY CANAM
DETAIL 31

FLANGE HANGER FOR INSULATED CONCRETE WALL

Ø\(\frac{3}{16}\)” (5 mm) TAPCON CONCRETE FASTENERS OR EQUIVALENT @ 24” (610 mm) c/c (MAX.) ANCHORED \(\frac{3}{4}\)” (19 mm) DEEP

DETAIL 32

CANTILEVERED BALCONY (SHALLOW JOIST PARALLEL TO BALCONY)

<Diagram>

IMPORTANT:
BRIDGING ANGLES, TO BE INSTALLED AFTER FORMS, ARE STRIPPED BUT BEFORE REMOVAL OF CANTILEVER TEMPORARY SUPPORTS.
DETAIL 33

CANTILEVERED BALCONY
(JOIST PARALLEL TO BALCONY)

(SEE SPECIFICATIONS OF ARCHITECT) VARIABLE (SEE PLAN) (SEE PLAN)

SLOPE

CONCRETE, ICF, WOOD, MASONRY WALL, STEEL BEAM OR STEEL STUD WALL

TEMPORARY SUPPORT FOR CANTILEVER

FLANGE HANGER (TYPE F.H.)

HANGER PLATE TO THICKEN SLAB
MORE 2" (51 mm), 3" (76 mm), 5" (127 mm) OR 6" (152 mm)
THAN BASE SLAB

BRIDGING INSTALLED AS SHOWN
MAY BE NECESSARY IF UPLIFT,
DUE TO CANTILEVERED SLAB,
EXCEEDS GRAVITY LOADS
(IF REQUIRED BY CONSULTING ENGINEER OR CANAM).

NOMINAL JOIST DEPTH

SLAB

T

THICKER SLAB

(T+TS)+1

4" (6 mm) = (SLAB THICKNESS + THICKER SLAB) + SHOE THICKNESS

DETAIL 34

CANTILEVERED BALCONY
(JOIST PERPENDICULAR TO BALCONY)

(SEE SPECIFICATIONS OF ARCHITECT)

TOP OF BEARING

(5 mm) (38 mm)

DEEP SHOE TO SUIT THICKER SLAB

OR BOLTED

(SEE DETAIL 4)

STEEL BEAM

TORSIONAL BRACING SYSTEM
TO BE COORDINATED WITH
ENGINEER OF RECORDS

HANGER PLATE

THICKER SLAB TO SUIT BALCONY

CEILING EXTENSION

(T+TS)+1/2 (6 mm)

3/8" (9 mm) MIN. BEARING FOR 4" (102 mm) SHOE (TYP.)

2/5" (64 mm) MIN. BEARING FOR 3" (76 mm) SHOE (TYP.)

IMPORTANT:
BRIDGING ANGLES, TO BE INSTALLED AFTER FORMS, ARE STRIPPED
BUT BEFORE REMOVAL OF CANTILEVER TEMPORARY SUPPORTS.
ENGINEERING TYPICAL DETAILS – HAMBRO D500 ON GIRDER

DETAIL 35
JOIST BEARING ON GIRDER

T+¼" (6 mm) = SLAB THICKNESS + SHOE THICKNESS

DETAIL 36
JOIST BEARING ON GIRDER

T+¼" (6 mm) = SLAB THICKNESS + SHOE THICKNESS

NOTE:
KNEE BRACING, IF REQUIRED, SEE ON DRAWING. SIZE TO BE DETERMINED.
DETAIL 37
BOLTED JOIST ON GIRDER

2 - \(\frac{3}{8}\)" (M12) BOLTS ASTM A307
\(\frac{3}{4}\)" x \(\frac{3}{16}\)" (14x17 mm) SLOTS @ \(\frac{3}{4}\)" (114 mm) c/c (HAMBRO SHOE)
\(\frac{3}{4}\)" (14 mm) Ø HOLES @ \(\frac{3}{4}\)" (114 mm) c/c (SUPPORT) U.N.O.

OR

2 - \(\frac{3}{4}\)" (M20) BOLTS ASTM A325
\(\frac{3}{4}\)" x \(\frac{3}{4}\)" (21x32 mm) SLOTS @ \(\frac{3}{4}\)" (140 mm) c/c (HAMBRO SHOE)
\(\frac{3}{4}\)" (21 mm) Ø HOLES @ \(\frac{3}{4}\)" (140 mm) c/c (SUPPORT) U.N.O.

\(T + \frac{3}{8}\)" (6 mm) = SLAB THICKNESS + SHOE THICKNESS

* WHEN DEEP SHOE, THE c/c OF HOLE IS DIFFERENT, CONSULT THE APPROPRIATE DETAILS ON PLAN.
DETAIL 38

JOIST PARALLEL TO A GIRDER WITHOUT SHEAR CONNECTORS

HILTI STEEL DECK FASTENERS:
- HSN24 FOR \(\frac{1}{8} \)" (3 mm) \(< t < \frac{3}{8} \)" (10 mm)
- EPN19 FOR \(t > \frac{3}{8} \)" (6 mm)

\(t \) = MINIMUM THICKNESS OF THE SUPPORTING STEEL

SELF TAPPING FASTENERS
@ 12" (305 mm) c/c

OR

\(\frac{3}{4} \)" (19 mm) @ 24" (610 mm)

\(T + \frac{1}{4} \)" (6 mm) = SLAB THICKNESS + SHOE THICKNESS

DETAIL 39

JOIST PARALLEL TO A GIRDER WITH SHEAR CONNECTORS

\(\frac{3}{8} \)" (3 mm) \(\leq t \leq 1\frac{1}{4} \)" (6 mm)

\(1\frac{1}{4} \)" - 12" (38 - 305 mm)

\(T + \frac{1}{4} \)" (6 mm) = SLAB THICKNESS + SHOE THICKNESS
Hambro D500 Composite Floor System

ARCHITECTURAL TYPICAL DETAILS – HAMBRO D500 (H SERIES)

HAMBRO D500 TYPICAL FLOOR ASSEMBLY
- CONCRETE SLAB
- WELDED WIRE MESH 6"x6" (152.4x152.4 mm)
- HAMBRO D500 STEEL JOISTS
- GALVANIZED STEEL FURRING CHANNEL 7/8" (22 mm)
25 GAUGE @ 24" (610 mm) O.C.
- 1/2" (12.7 mm) "FRECODE C" GYPSUM PANEL

FURRING CHANNELS ATTACHED TO JOISTS WITH 18 GAUGE GALVANIZED STEEL TIE WIRE

SECTION - TYPICAL FLOOR
LOAD BEARING STEEL STUD WALL (PERPENDICULAR)
Hambro D500 Composite Floor System

- Pour Stop Angle
- Cavity filled with Mineral Wool Insulation
- Joist Shoe Fastened to Steel Beam
- Galvanized Steel Studs
- Wall Composition Per Project Specifications
- Structural Steel (Perpendicular)
- Extension for Ceiling
- Double Top Track with 1" (25.4 mm) Deflection. Cavity filled with mineral wool
- Hambro D500 Typical Floor Assembly

SLAB

NOMINAL JOIST DEPTH
Hambro D500 Composite Floor System

INSULATED CONCRETE FORMS WALL (PERPENDICULAR)

INSULATED CONCRETE FORMS WALL (PARALLEL)
Hambro D500 Composite Floor System

LOAD BEARING MASONRY WALL (PERPENDICULAR)

LOAD BEARING MASONRY WALL (PARALLEL)
Hambro D500 Composite Floor System

LOAD BEARING WOOD STUD WALL (PERPENDICULAR)

LOAD BEARING WOOD STUD WALL (PARALLEL)
JOIST MEMBERS
The MD2000 joist system (MDH series) features a top chord made of a cold formed “S” shaped section, an open web of bent steel rods and a wide range of two angles back-to-back (hot rolled and cold formed) as bottom chord.

JOIST SHOE
The Hambro joist shoe consists of an angle with a vertical leg of 3½ in. (89 mm), a horizontal leg of variable lengths between 3 in. (76 mm), 4 in. (102 mm), 5 in. (127 mm) or 6 in. (152 mm), a thickness of ¼ in. (6 mm) and a variable width depending on the fastening method.
Hambro MD2000 Composite Floor System

Shoe configuration is adapted according to the fastening method, options are shown in the following figure.

Bolted shoe - Option 1
Bolts ½ in. (13 mm)

Bolted shoe - Option 2
Bolts ¾ in. (19 mm)

Welded or mechanically anchored shoe

SPAN AND DEPTH
Span: up to 43 ft. (13,100 mm)
Depth: between 8 in. (200 mm) and 24 in. (600 mm)

JOIST SPACING
The standard joist spacing is 4 ft. (1,220 mm), unless noted otherwise on Canam drawings.

MAXIMUM END REACTION
The maximum factored end reaction of the MD2000 joist is 23.29 kip (103.6 kN) at the composite stage.

FORMWORK
Formwork is made of permanent P-3606 steel deck installed as single span sheet between joists.
LATERAL STABILITY

At the non-composite stage, joists are braced at the top and bottom chords with steel bridging in order to prevent lateral buckling and hold the joist in the vertical plane during construction. These bridging lines must be continuous. At the end of the bay, the bridging must be firmly secured to a wall or steel beam that must be designed to carry the loads transferred by the bridging lines. If there is no wall or beam at the end of the bay, then the bottom chord can be braced temporarily to the floor below.
MAXIMUM DUCT OPENING

The following table is a guideline for the maximum duct sizes that can fit through the openings of the different joist depths.

Maximum duct opening (in.)

<table>
<thead>
<tr>
<th>Joist depth</th>
<th>P</th>
<th>D</th>
<th>Sq</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>20</td>
<td>4</td>
<td>4</td>
<td>6 x 3</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>6</td>
<td>5</td>
<td>7 x 4</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>8</td>
<td>6</td>
<td>9 x 5</td>
</tr>
<tr>
<td>14</td>
<td>24</td>
<td>9</td>
<td>7</td>
<td>9½ x 6</td>
</tr>
<tr>
<td>16</td>
<td>24</td>
<td>10</td>
<td>8</td>
<td>10½ x 6½</td>
</tr>
<tr>
<td>18</td>
<td>24</td>
<td>11</td>
<td>8½</td>
<td>11 x 7</td>
</tr>
<tr>
<td>20</td>
<td>24</td>
<td>11½</td>
<td>9</td>
<td>12 x 7</td>
</tr>
<tr>
<td>22</td>
<td>24</td>
<td>12</td>
<td>9½</td>
<td>12 x 8</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>12½</td>
<td>10</td>
<td>13 x 8</td>
</tr>
</tbody>
</table>

Maximum duct opening (mm)

<table>
<thead>
<tr>
<th>Joist depth</th>
<th>P</th>
<th>D</th>
<th>Sq</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>508</td>
<td>100</td>
<td>100</td>
<td>150 x 75</td>
</tr>
<tr>
<td>250</td>
<td>508</td>
<td>150</td>
<td>125</td>
<td>175 x 100</td>
</tr>
<tr>
<td>300</td>
<td>610</td>
<td>200</td>
<td>150</td>
<td>225 x 125</td>
</tr>
<tr>
<td>350</td>
<td>610</td>
<td>225</td>
<td>175</td>
<td>240 x 150</td>
</tr>
<tr>
<td>400</td>
<td>610</td>
<td>250</td>
<td>200</td>
<td>265 x 165</td>
</tr>
<tr>
<td>450</td>
<td>610</td>
<td>280</td>
<td>216</td>
<td>280 x 175</td>
</tr>
<tr>
<td>500</td>
<td>610</td>
<td>292</td>
<td>225</td>
<td>310 x 175</td>
</tr>
<tr>
<td>550</td>
<td>610</td>
<td>300</td>
<td>240</td>
<td>310 x 200</td>
</tr>
<tr>
<td>600</td>
<td>610</td>
<td>315</td>
<td>250</td>
<td>330 x 200</td>
</tr>
</tbody>
</table>
ACCESSORIES
Accessories are used to accommodate special cases.
1. Deep shoe: for height variation of joist bearing

MINI-JOIST
The Hambro MD2000 top chord section, being 3⅛ in. (79 mm), possesses sufficient capacity to become the major steel component of the MD2000 mini-joist series. The two available types are illustrated in the figure below. The first type is called MD and has no reinforcement. The second one is the RMD with a rod reinforcement into the top chord. These two types have a steel angle shoe, same as the MD2000 joist.
FIRE RATING

Fire protection floor/ceiling assemblies using Hambro have been tested by independent laboratories. Fire resistance ratings have been issued by Underwriters Laboratories Inc. (UL) and by Underwriters Laboratories of Canada (ULC). These tests cover gypsum board, acoustical tile and spray on protection systems.

Reference to these published listings should be made in the detailing of the ceiling construction. The following table is for information only, the original publication of these standards should be consulted before specifying it. The latest update of these listings is available on the UL directory or its website at www.ul.com or ULC website at www.ulc.ca.

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Assembly detail</th>
<th>Ceiling description</th>
<th>Design No.</th>
<th>Slab</th>
<th>Fire rating (h)</th>
<th>Beam rating (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gypsum board</td>
<td>I522</td>
<td>4½ in. (115 mm)</td>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or ½ in. (12.7 mm)</td>
<td>G524</td>
<td>Varies</td>
<td>1 to 3</td>
<td>1 to 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Type C</td>
<td>G524</td>
<td>Varies</td>
<td>1 to 3</td>
<td>1 to 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or 5/8 in. (16 mm)</td>
<td>G524</td>
<td>Varies</td>
<td>1 to 3</td>
<td>1 to 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Type X</td>
<td>G524</td>
<td>Varies</td>
<td>1 to 3</td>
<td>1 to 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G203</td>
<td>4¼ in. (105 mm)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suspended or ceiling tile</td>
<td>G213</td>
<td>4 in. (100 mm)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G213</td>
<td>4 in. (120 mm)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G227</td>
<td>4 in. (100 mm)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G228</td>
<td>4 in. (100 mm)</td>
<td>1.5 to 2</td>
<td>1.5 to 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G229</td>
<td>4 in. (100 mm)</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spray on</td>
<td>G702</td>
<td>Varies</td>
<td>1 to 3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>I800</td>
<td>4 to 5 in. (100 to 125 mm)</td>
<td>1 to 2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>G802</td>
<td>Varies</td>
<td>1 to 3</td>
<td>-</td>
</tr>
</tbody>
</table>

*½ in. (16 mm) type X applicable only in G524 for 1 hour fire rating.

Please contact your Canam sales representative for any questions regarding the system’s fire rating.
ACOUSTICAL PROPERTIES

SOUND TRANSMISSION CLASS (STC)
The STC is a rating that assigns a numerical value to the sound insulation provided by a partition separating rooms or areas. The rating is designed to match subjective impressions of the sound insulation provided against the sounds of speech, music, television, office machines and similar sources of airborne noise that are characteristic of offices and dwellings.

Here are the guidelines for a sample of STC ratings:

<table>
<thead>
<tr>
<th>STC Rating</th>
<th>Practical guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Normal speech easily understood</td>
</tr>
<tr>
<td>30</td>
<td>Normal speech audible, but not intelligible</td>
</tr>
<tr>
<td>35</td>
<td>Loud speech audible, fairly understandable</td>
</tr>
<tr>
<td>40</td>
<td>Loud speech audible, but not intelligible</td>
</tr>
<tr>
<td>45</td>
<td>Loud speech barely audible</td>
</tr>
<tr>
<td>50</td>
<td>Shouting barely audible</td>
</tr>
<tr>
<td>55</td>
<td>Shouting inaudible</td>
</tr>
</tbody>
</table>

IMPACT INSULATION CLASS (IIC)
The Impact Insulation Class (IIC) is a rating designed to measure the impact sound insulation provided by the floor/ceiling construction. The IIC of any assembly is strongly affected by and dependent upon the type of floor finish for its resistance to impact noise transmission.

ACOUSTICAL PERFORMANCES
The result in the following table have been obtained following laboratory testing. Field testing may vary depending on the quality of the assembly and the various materials used. Note that the minimum design slab thickness for Hambro MD2000 system is 4½ in. (114 mm).

<p>| Hambro assemblies |
|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Assembly</th>
<th>Total slab thickness in. (mm)</th>
<th>Steel deck</th>
<th>Gypsum thickness in. (mm)</th>
<th># of gypsum layer</th>
<th>STC</th>
<th>IIC</th>
<th>Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 (102)</td>
<td>P-3606 gage 22</td>
<td>½ (12.7)</td>
<td>1</td>
<td>52</td>
<td>27</td>
<td>NGC Testing Services Buffalo, NY, USA www.ngctestingservices.com</td>
</tr>
</tbody>
</table>
Since the assemblies can have a wide range of components and performances, please contact a Canam representative for further information on the STC and IIC scores.

ACOUSTICAL ASSOCIATIONS AND CONSULTANTS

Because sound transmission and impact insulation depends upon a number of variables relating to the installation and materials used, Canam makes no assessments about the sound transmission performance of its products as installed. You should consult with a qualified acoustical consultant if you would like information about the final sound performance on the project.

The following is a list of acoustical associations that may be found on the Internet:

2. Canadian Acoustical Association – www.caa-aca.ca;

As a convenience, Canam is providing the following list of vendors who have worked with the Hambro product. This list is not an endorsement. Canam has no affiliation with these providers, and makes no representations concerning their abilities.

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Address</th>
<th>City, Province, Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieben Associates, Inc.</td>
<td>625 NW 60th Street, Suite C</td>
<td>Gainesville, FL, United States</td>
</tr>
<tr>
<td>Acousti-Lab</td>
<td>C.P. 5028</td>
<td>Ste-Anne-des-Plaines, QC, Canada</td>
</tr>
<tr>
<td>Octave Acoustique, Inc.</td>
<td>963, chemin Royal</td>
<td>Saint-Laurent-de-l’Île-d’Orléans, QC, Canada</td>
</tr>
<tr>
<td>Acousti-Tech</td>
<td>150, rue Léon-Vachon</td>
<td>Saint-Lambert-de-Lauzon, QC, Canada</td>
</tr>
</tbody>
</table>

SELECTION TABLES

MD2000 JOIST SPAN TABLES

The joist span tables are provided to assist engineers in selecting the most optimal depth of joist for a particular slab thickness and a specific loading. The engineer must specify the joist depth, slab thickness, the design loads, special point loads and linear loads where applicable. Canam will provide composite joists designed to meet these requirements.

The following load tables are guidelines and give the optimized depth for specific span, slab thickness and loads. The optimal situation is represented by the value 1.00 in the tables. Values greater than 1.00 represent the additional weight percentage at the optimum value. The first depth recorded per table indicate the minimum that could be used for the length specified.

Other types of loading and slab thickness than the ones shown in this section can be used for the Hambro MD2000 system. If the criteria for your project are different from those contained in the tables, please contact a Canam representative for assistance.

Note:

The validation of the optimal depth must be done in conjunction with the validation of the concrete slab capacity.

Joist spacing and concrete strength table

Values indicated are calculated with a regular spacing of 4 ft. (1,220 mm) and a concrete strength of 3 ksi (20 MPa).
Loads

Live load

The tables have been prepared for four categories of loading depending on the usage of the floor:

<table>
<thead>
<tr>
<th>Use</th>
<th>Uniform load</th>
<th>or</th>
<th>Point load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>40 psf (1.92 kPa)</td>
<td>1.01 kip (4.5 kN)</td>
<td></td>
</tr>
<tr>
<td>Office</td>
<td>50 psf (2.4 kPa)</td>
<td>2.02 kip (9 kN)</td>
<td></td>
</tr>
<tr>
<td>Corridor/lobby</td>
<td>100 psf (4.8 kPa)</td>
<td>1.01 kip (4.5 kN) or 2.02 kip (9 kN)</td>
<td></td>
</tr>
<tr>
<td>Garage</td>
<td>50 psf (2.4 kPa)</td>
<td>4.05 kip (18 kN)</td>
<td></td>
</tr>
</tbody>
</table>

Dead load

The tables have been prepared for different slab thicknesses, therefore different dead loads:

<table>
<thead>
<tr>
<th>Total slab thickness</th>
<th>Dead load</th>
</tr>
</thead>
<tbody>
<tr>
<td>4½ in. (115 mm)</td>
<td>73 psf (3.50 kPa)</td>
</tr>
<tr>
<td>5 in. (125 mm)</td>
<td>79 psf (3.78 kPa)</td>
</tr>
<tr>
<td>5½ in. (140 mm)</td>
<td>85 psf (4.07 kPa)</td>
</tr>
<tr>
<td>6 in. (150 mm)</td>
<td>91 psf (4.36 kPa)</td>
</tr>
<tr>
<td>6½ in. (165 mm)</td>
<td>97 psf (4.64 kPa)</td>
</tr>
</tbody>
</table>

Note:
The total slab thickness includes the steel deck.
Hambro MD2000 Composite Floor System

Deflection criteria
For all cases presented in the tables, deflection for live load does not exceed $L/360$.

Vibration criteria
Maximum peak acceleration in full height partition: 0.5% a/g
Damping: 5%

Joist designation
MD2000 joists are designated MDHXX (MDHXXX) on drawings. For example, MDH14 (MDH350) means that the joist is 14 in. (350 mm) depth. The depth of a joist is measured from the underside of the plain slab thickness (top of steel deck) to the extremity of the bottom chord.

Example
Find the optimal depth and the minimum depth for the following office project with Hambro MD2000 joists (MDH series).

<table>
<thead>
<tr>
<th></th>
<th>Imperial</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Span</td>
<td>32 ft.</td>
<td>(9,755 mm)</td>
</tr>
<tr>
<td>Slab thickness</td>
<td>5½ in.</td>
<td>(140 mm)</td>
</tr>
<tr>
<td>Joists spacing</td>
<td>4 ft.</td>
<td>(1,220 mm)</td>
</tr>
<tr>
<td>Concrete strength</td>
<td>3 ksi</td>
<td>(20 MPa)</td>
</tr>
<tr>
<td>Concrete density</td>
<td>150 pcf</td>
<td>(2,400 kg/m³)</td>
</tr>
<tr>
<td>Live load</td>
<td>50 psf</td>
<td>(2.4 kPa)</td>
</tr>
<tr>
<td>Dead load</td>
<td>85 psf</td>
<td>(4.07 kPa)</td>
</tr>
<tr>
<td>- Joist</td>
<td>3.15 psf</td>
<td>(0.15 kN/m²)</td>
</tr>
<tr>
<td>- Concrete</td>
<td>54 psf</td>
<td>(2.59 kN/m²)</td>
</tr>
<tr>
<td>- Mechanical</td>
<td>2.5 psf</td>
<td>(0.12 kN/m²)</td>
</tr>
<tr>
<td>- Ceiling</td>
<td>3.15 psf</td>
<td>(0.15 kN/m²)</td>
</tr>
<tr>
<td>- Partition</td>
<td>20 psf</td>
<td>(0.96 kN/m²)</td>
</tr>
<tr>
<td>- Steel deck</td>
<td>2 psf</td>
<td>(0.10 kN/m²)</td>
</tr>
</tbody>
</table>

Using this information, you can find in the tables that:
1. The optimal joist depth is: 20 in. (500 mm).
2. The minimum joist depth is: 14 in. (350 mm).
<table>
<thead>
<tr>
<th>Slab thickness (in.)</th>
<th>Slab thickness (mm)</th>
<th>Length (ft. / mm)</th>
<th>Depth (in. / mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4½</td>
<td>115</td>
<td>8 in. / 200 mm</td>
<td>1.04 1.04 1.04 1.06 1.08 1.08 1.08 1.08</td>
</tr>
<tr>
<td>5</td>
<td>125</td>
<td>10 in. / 250 mm</td>
<td>1.06 1.06 1.08 1.08 1.10 1.10 1.10 1.10</td>
</tr>
<tr>
<td>5½</td>
<td>140</td>
<td>12 in. / 300 mm</td>
<td>1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04</td>
</tr>
<tr>
<td>6</td>
<td>150</td>
<td>14 in. / 350 mm</td>
<td>1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01</td>
</tr>
<tr>
<td>6½</td>
<td>165</td>
<td>16 in. / 400 mm</td>
<td>1.03 1.03 1.03 1.03 1.07 1.07 1.07 1.07</td>
</tr>
<tr>
<td>4½</td>
<td>115</td>
<td>18 in. / 450 mm</td>
<td>1.09 1.13 1.13 1.13 1.14 1.14 1.14 1.14</td>
</tr>
<tr>
<td>5</td>
<td>125</td>
<td>20 in. / 500 mm</td>
<td>1.15 1.15 1.15 1.15 1.16 1.16 1.16 1.16</td>
</tr>
<tr>
<td>5½</td>
<td>140</td>
<td>12 ft. / 3,660 mm</td>
<td>1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06</td>
</tr>
<tr>
<td>6</td>
<td>150</td>
<td>14 ft. / 4,270 mm</td>
<td>1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06</td>
</tr>
<tr>
<td>6½</td>
<td>165</td>
<td>16 ft. / 4,880 mm</td>
<td>1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12</td>
</tr>
<tr>
<td>4½</td>
<td>115</td>
<td>18 ft. / 5,490 mm</td>
<td>1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06</td>
</tr>
<tr>
<td>5</td>
<td>125</td>
<td>20 ft. / 6,100 mm</td>
<td>1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06</td>
</tr>
<tr>
<td>5½</td>
<td>140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6½</td>
<td>165</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MD2000 span tables

<table>
<thead>
<tr>
<th>Live loads</th>
<th>Residential</th>
<th>Office</th>
<th>Corridor/lobby</th>
<th>Garage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slab thickness (in.)</td>
<td>4½</td>
<td>5</td>
<td>5½</td>
<td>6</td>
</tr>
<tr>
<td>Slab thickness (mm)</td>
<td>115</td>
<td>125</td>
<td>140</td>
<td>150</td>
</tr>
<tr>
<td>Length (ft. / mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (in. / mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 ft. / 6,710 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 in. / 250 mm</td>
<td>1.23</td>
<td>1.12</td>
<td>1.13</td>
<td>1.14</td>
</tr>
<tr>
<td></td>
<td>1.23</td>
<td>1.15</td>
<td>1.16</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td>1.15</td>
<td>1.15</td>
<td>1.16</td>
<td>1.18</td>
</tr>
<tr>
<td>12 in. / 300 mm</td>
<td>1.08</td>
<td>1.03</td>
<td>1.03</td>
<td>1.06</td>
</tr>
<tr>
<td></td>
<td>1.08</td>
<td>1.04</td>
<td>1.10</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td>1.06</td>
<td>1.06</td>
<td>1.08</td>
<td>1.07</td>
</tr>
<tr>
<td>14 in. / 350 mm</td>
<td>1.00</td>
<td>1.00</td>
<td>1.02</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>1.04</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td>1.02</td>
<td>1.02</td>
<td>1.04</td>
<td>1.07</td>
</tr>
<tr>
<td>16 in. / 400 mm</td>
<td>1.00</td>
<td>1.02</td>
<td>1.05</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td>1.05</td>
<td>1.07</td>
<td>1.07</td>
<td>1.07</td>
</tr>
<tr>
<td>18 in. / 450 mm</td>
<td>1.11</td>
<td>1.11</td>
<td>1.13</td>
<td>1.13</td>
</tr>
<tr>
<td></td>
<td>1.10</td>
<td>1.13</td>
<td>1.13</td>
<td>1.15</td>
</tr>
<tr>
<td>20 in. / 500 mm</td>
<td>1.13</td>
<td>1.13</td>
<td>1.16</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td>1.16</td>
<td>1.16</td>
<td>1.19</td>
<td>1.19</td>
</tr>
<tr>
<td>22 in. / 550 mm</td>
<td>1.17</td>
<td>1.19</td>
<td>1.23</td>
<td>1.25</td>
</tr>
<tr>
<td>24 ft. / 7,315 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 in. / 250 mm</td>
<td>1.30</td>
<td>1.13</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>1.24</td>
<td>1.16</td>
<td>1.18</td>
<td>1.21</td>
</tr>
<tr>
<td>12 in. / 300 mm</td>
<td>1.15</td>
<td>1.07</td>
<td>1.10</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td>1.11</td>
<td>1.06</td>
<td>1.09</td>
<td>1.10</td>
</tr>
<tr>
<td>14 in. / 350 mm</td>
<td>1.00</td>
<td>1.02</td>
<td>1.05</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.04</td>
<td>1.05</td>
<td>1.06</td>
</tr>
<tr>
<td>16 in. / 400 mm</td>
<td>1.02</td>
<td>1.02</td>
<td>1.05</td>
<td>1.06</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.06</td>
<td>1.03</td>
<td>1.04</td>
</tr>
<tr>
<td>18 in. / 450 mm</td>
<td>1.08</td>
<td>1.08</td>
<td>1.09</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td>1.10</td>
<td>1.05</td>
<td>1.08</td>
<td>1.08</td>
</tr>
<tr>
<td>20 in. / 500 mm</td>
<td>1.13</td>
<td>1.13</td>
<td>1.16</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td>1.16</td>
<td>1.16</td>
<td>1.19</td>
<td>1.19</td>
</tr>
<tr>
<td>22 in. / 550 mm</td>
<td>1.17</td>
<td>1.17</td>
<td>1.19</td>
<td>1.19</td>
</tr>
<tr>
<td>26 ft. / 7,925 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 in. / 250 mm</td>
<td>1.30</td>
<td>1.13</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>1.24</td>
<td>1.16</td>
<td>1.18</td>
<td>1.21</td>
</tr>
<tr>
<td>12 in. / 300 mm</td>
<td>1.15</td>
<td>1.07</td>
<td>1.10</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td>1.11</td>
<td>1.06</td>
<td>1.09</td>
<td>1.10</td>
</tr>
<tr>
<td>14 in. / 350 mm</td>
<td>1.01</td>
<td>1.04</td>
<td>1.05</td>
<td>1.06</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.04</td>
<td>1.01</td>
<td>1.04</td>
</tr>
<tr>
<td>16 in. / 400 mm</td>
<td>1.03</td>
<td>1.04</td>
<td>1.05</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td>1.05</td>
<td>1.05</td>
<td>1.07</td>
<td>1.07</td>
</tr>
<tr>
<td>18 in. / 450 mm</td>
<td>1.06</td>
<td>1.08</td>
<td>1.09</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td>1.06</td>
<td>1.06</td>
<td>1.07</td>
<td>1.07</td>
</tr>
<tr>
<td>20 in. / 500 mm</td>
<td>1.09</td>
<td>1.11</td>
<td>1.16</td>
<td>1.21</td>
</tr>
<tr>
<td></td>
<td>1.10</td>
<td>1.14</td>
<td>1.18</td>
<td>1.18</td>
</tr>
<tr>
<td>22 in. / 550 mm</td>
<td>1.17</td>
<td>1.17</td>
<td>1.19</td>
<td>1.19</td>
</tr>
<tr>
<td>28 ft. / 8,535 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 in. / 250 mm</td>
<td>1.30</td>
<td>1.13</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>1.24</td>
<td>1.16</td>
<td>1.18</td>
<td>1.21</td>
</tr>
<tr>
<td>12 in. / 300 mm</td>
<td>1.15</td>
<td>1.07</td>
<td>1.10</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td>1.11</td>
<td>1.06</td>
<td>1.09</td>
<td>1.10</td>
</tr>
<tr>
<td>14 in. / 350 mm</td>
<td>1.01</td>
<td>1.04</td>
<td>1.05</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.04</td>
<td>1.04</td>
<td>1.05</td>
</tr>
<tr>
<td>16 in. / 400 mm</td>
<td>1.02</td>
<td>1.04</td>
<td>1.06</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td>1.04</td>
<td>1.06</td>
<td>1.08</td>
<td>1.09</td>
</tr>
<tr>
<td>18 in. / 450 mm</td>
<td>1.03</td>
<td>1.05</td>
<td>1.06</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td>1.05</td>
<td>1.07</td>
<td>1.07</td>
<td>1.07</td>
</tr>
<tr>
<td>20 in. / 500 mm</td>
<td>1.07</td>
<td>1.08</td>
<td>1.10</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td>1.06</td>
<td>1.08</td>
<td>1.08</td>
<td>1.09</td>
</tr>
<tr>
<td>22 in. / 550 mm</td>
<td>1.11</td>
<td>1.13</td>
<td>1.14</td>
<td>1.14</td>
</tr>
<tr>
<td>24 in. / 600 mm</td>
<td>1.17</td>
<td>1.17</td>
<td>1.19</td>
<td>1.19</td>
</tr>
<tr>
<td>30 ft. / 9,145 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 in. / 250 mm</td>
<td>1.30</td>
<td>1.13</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>1.24</td>
<td>1.18</td>
<td>1.21</td>
<td>1.21</td>
</tr>
<tr>
<td>12 in. / 300 mm</td>
<td>1.15</td>
<td>1.07</td>
<td>1.10</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td>1.11</td>
<td>1.06</td>
<td>1.09</td>
<td>1.10</td>
</tr>
<tr>
<td>14 in. / 350 mm</td>
<td>1.01</td>
<td>1.04</td>
<td>1.05</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.04</td>
<td>1.04</td>
<td>1.05</td>
</tr>
<tr>
<td>16 in. / 400 mm</td>
<td>1.02</td>
<td>1.04</td>
<td>1.06</td>
<td>1.06</td>
</tr>
<tr>
<td></td>
<td>1.04</td>
<td>1.06</td>
<td>1.06</td>
<td>1.06</td>
</tr>
<tr>
<td>18 in. / 450 mm</td>
<td>1.03</td>
<td>1.05</td>
<td>1.06</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td>1.05</td>
<td>1.07</td>
<td>1.08</td>
<td>1.08</td>
</tr>
<tr>
<td>20 in. / 500 mm</td>
<td>1.07</td>
<td>1.08</td>
<td>1.10</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td>1.06</td>
<td>1.08</td>
<td>1.08</td>
<td>1.09</td>
</tr>
<tr>
<td>22 in. / 550 mm</td>
<td>1.11</td>
<td>1.13</td>
<td>1.14</td>
<td>1.14</td>
</tr>
<tr>
<td>24 in. / 600 mm</td>
<td>1.17</td>
<td>1.17</td>
<td>1.19</td>
<td>1.19</td>
</tr>
</tbody>
</table>

- Most optimal situation of the live load category
- Most optimal depth according to slab thickness
- End joist reaction not acceptable and/or compression into top chord is higher than the maximum factored capacity
MD2000 span tables

<table>
<thead>
<tr>
<th>Slab thickness (in.)</th>
<th>Residential</th>
<th>Office</th>
<th>Corridor/lobby</th>
<th>Garage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40 psf (1.92 kPa)</td>
<td>50 psf (2.4 kPa)</td>
<td>100 psf (4.8 kPa)</td>
<td>50 psf (2.4 kPa)</td>
</tr>
<tr>
<td>Length (ft. / mm)</td>
<td>Depth (in. / mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 ft. / 9.755 mm</td>
<td>115 125 140 150 165</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 in. / 350 mm</td>
<td>1.08 1.04 1.12 1.15 1.18 1.05 1.06 1.10 1.19 1.22 1.08 1.10 1.16 1.16 1.20 1.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 in. / 400 mm</td>
<td>1.02 1.03 1.06 1.10 1.19 1.01 1.02 1.12 1.13 1.16 1.04 1.06 1.08 1.10 1.14 1.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 in. / 450 mm</td>
<td>1.00 1.04 1.07 1.09 1.13 1.03 1.04 1.05 1.07 1.10 1.01 1.02 1.02 1.05 1.08 1.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 in. / 500 mm</td>
<td>1.01 1.04 1.05 1.07 1.07 1.00 1.04 1.04 1.07 1.10 1.00 1.02 1.03 1.03 1.04 1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 in. / 550 mm</td>
<td>1.05 1.06 1.07 1.10 1.14 1.02 1.03 1.09 1.12 1.15 1.04 1.04 1.07 1.08 1.11 1.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 in. / 600 mm</td>
<td>1.03 1.07 1.10 1.15 1.19 1.09 1.09 1.12 1.13 1.16 1.03 1.03 1.05 1.07 1.07 1.08</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Most optimal situation of the live load category
Most optimal depth according to slab thickness
End joist reaction not acceptable and/or compression into top chord is higher than the maximum factored capacity
MD2000 MINI-JOIST SPAN TABLES

The following tables show the maximum total length of the two types of MD2000 mini-joist, considering a spacing of 4 ft. (1,220 mm) and the uniform loads presented. The minimum length for the MD2000 mini-joist is 4 ft. (1,220 mm).

Slab thickness (in.)
<table>
<thead>
<tr>
<th>Slab thickness (in.)</th>
<th>4½</th>
<th>5</th>
<th>5½</th>
<th>6</th>
<th>6½</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead load (psf)</td>
<td>73</td>
<td>79</td>
<td>85</td>
<td>91</td>
<td>97</td>
</tr>
<tr>
<td>Live load (psf)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>5'-9''</td>
<td>5'-6''</td>
<td>5'-3''</td>
<td>5'-1''</td>
<td>4'-11''</td>
</tr>
<tr>
<td>RMD</td>
<td>8'-0''</td>
<td>7'-8''</td>
<td>7'-4''</td>
<td>7'-1''</td>
<td>6'-10''</td>
</tr>
<tr>
<td>Live load (psf)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>5'-2''</td>
<td>5'-1''</td>
<td>5'-0''</td>
<td>4'-11''</td>
<td>4'-10''</td>
</tr>
<tr>
<td>RMD</td>
<td>7'-2''</td>
<td>7'-1''</td>
<td>6'-11''</td>
<td>6'-10''</td>
<td>6'-9''</td>
</tr>
</tbody>
</table>

Slab thickness (mm)
<table>
<thead>
<tr>
<th>Slab thickness (mm)</th>
<th>115</th>
<th>125</th>
<th>140</th>
<th>150</th>
<th>165</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead load (kPa)</td>
<td>3.5</td>
<td>3.8</td>
<td>4.1</td>
<td>4.4</td>
<td>4.6</td>
</tr>
<tr>
<td>Live load (kPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>1,753</td>
<td>1,676</td>
<td>1,600</td>
<td>1,549</td>
<td>1,499</td>
</tr>
<tr>
<td>RMD</td>
<td>2,438</td>
<td>2,337</td>
<td>2,235</td>
<td>2,159</td>
<td>2,083</td>
</tr>
<tr>
<td>Live load (kPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>1,575</td>
<td>1,549</td>
<td>1,524</td>
<td>1,499</td>
<td>1,473</td>
</tr>
<tr>
<td>RMD</td>
<td>2,184</td>
<td>2,159</td>
<td>2,108</td>
<td>2,083</td>
<td>2,057</td>
</tr>
</tbody>
</table>

Notes:
The total spans indicated in these tables are considered to be out to out, meaning they take into account a joist seat of normally 4 in. (102 mm) long at each end, therefore the maximum clear span (without the joist seats) is 8 ft. (2,438 mm).

SLAB TABLES FOR MD2000 PRODUCT

Mesh size

The typical wire mesh used has a yield strength of 65,000 psi minimum. The typical sizes used are indicated in the following table:

<table>
<thead>
<tr>
<th>Metric</th>
<th>Imperial</th>
<th>Diameter in./lin. ft.</th>
<th>Area mm²/lin. m</th>
</tr>
</thead>
<tbody>
<tr>
<td>152 x 152 MW18.7 x MW18.7</td>
<td>6 x 6 W2.9 / W2.9 (6x6-6/6)</td>
<td>0.192</td>
<td>4.88</td>
</tr>
<tr>
<td>152 x 152 MW25.7 x MW25.7</td>
<td>6 x 6 W4 / W4 (6x6-4/4)</td>
<td>0.226</td>
<td>5.74</td>
</tr>
</tbody>
</table>
Slab capacity under uniform load

MD2000 - Maximum unshored deck for single spans

\[f'c = 3,000 \text{ psi}, \ \rho = 145 \text{ pcf}, \ F_y = 40,000 \text{ psi} \]

<table>
<thead>
<tr>
<th>Effective slab thickness (total slab)</th>
<th>Deck gage</th>
<th>22</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 in. (4½ in.)</td>
<td>W6 / W6</td>
<td>240</td>
<td>275</td>
</tr>
<tr>
<td>3½ in. (5 in.)</td>
<td>W4 / W4</td>
<td>319</td>
<td>376</td>
</tr>
<tr>
<td>4 in. (5½ in.)</td>
<td>W4 / W4</td>
<td>342</td>
<td>376</td>
</tr>
<tr>
<td>4½ in. (6 in.)</td>
<td>W6 / W6</td>
<td>324</td>
<td>376</td>
</tr>
<tr>
<td>5 in. (6½ in.)</td>
<td>W4 / W4</td>
<td>342</td>
<td>376</td>
</tr>
</tbody>
</table>

Notes:
- In non-composite stage, deck supports self-weight, weight of concrete and construction load.
- Maximum unshored deck span considers the deflection under wet concrete to be less than the span over 180 (L/180).
- The web crippling resistance is calculated assuming the end bearing length equals to 1.5 in. (40 mm).

MD2000 - Maximum unshored deck for single spans

\[f'c = 20 \text{ MPa}, \ \rho = 2,400 \text{ kg/m}^3, \ F_y = 275 \text{ MPa} \]

<table>
<thead>
<tr>
<th>Effective slab thickness (total slab)</th>
<th>Deck gage</th>
<th>22</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 mm (115 mm)</td>
<td></td>
<td>1,710</td>
<td>1,955</td>
</tr>
<tr>
<td>90 mm (125 mm)</td>
<td></td>
<td>1,640</td>
<td>1,870</td>
</tr>
<tr>
<td>100 mm (140 mm)</td>
<td></td>
<td>1,580</td>
<td>1,800</td>
</tr>
<tr>
<td>115 mm (150 mm)</td>
<td></td>
<td>1,525</td>
<td>1,740</td>
</tr>
<tr>
<td>125 mm (165 mm)</td>
<td></td>
<td>1,480</td>
<td>1,685</td>
</tr>
</tbody>
</table>

MD2000 - Slab capacity chart for uniform loading in composite stage (total factored load in kPa)

\[f'c = 3,000 \text{ psi}, \ \rho = 145 \text{ pcf}, \ F_y = 65,000 \text{ psi} \]

<table>
<thead>
<tr>
<th>Effective slab thickness (total slab)</th>
<th>Chair</th>
<th>Mesh size (6 in X 6 in.)</th>
<th>Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 in. (4½ in.)</td>
<td>N/A</td>
<td>W6 / W6</td>
<td></td>
</tr>
<tr>
<td>3½ in. (5 in.)</td>
<td>N/A</td>
<td>W4 / W4</td>
<td></td>
</tr>
<tr>
<td>4 in. (5½ in.)</td>
<td>N/A</td>
<td>W4 / W4</td>
<td></td>
</tr>
<tr>
<td>4½ in. (6 in.)</td>
<td>N/A</td>
<td>W4 / W4</td>
<td></td>
</tr>
<tr>
<td>5 in. (6½ in.)</td>
<td>3 in.</td>
<td>W4 / W4</td>
<td></td>
</tr>
</tbody>
</table>

MD2000 - Slab capacity chart for uniform loading in composite stage (total factored load in kPa)

\[f'c = 20 \text{ MPa}, \ \rho = 2,400 \text{ kg/m}^3, \ F_y = 450 \text{ MPa} \]

<table>
<thead>
<tr>
<th>Effective slab thickness (total slab)</th>
<th>Chair</th>
<th>Mesh size (152 mm x 152 mm)</th>
<th>Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>76 mm (114 mm)</td>
<td>N/A</td>
<td>MW18.7 x MW18.7</td>
<td></td>
</tr>
<tr>
<td>90 mm (128 mm)</td>
<td>N/A</td>
<td>MW25.7 x MW25.7</td>
<td></td>
</tr>
<tr>
<td>102 mm (140 mm)</td>
<td>N/A</td>
<td>MW25.7 x MW25.7</td>
<td></td>
</tr>
<tr>
<td>115 mm (153 mm)</td>
<td>N/A</td>
<td>MW25.7 x MW25.7</td>
<td></td>
</tr>
<tr>
<td>127 mm (165 mm)</td>
<td>76 mm</td>
<td>2 layers MW18.7 x MW18.7</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Total factored load is taken as 1.25D + 1.5L
- Where: D = dead load, L = live load
- (1) Only slab portion over the deck is considered for effective slab thickness.
- (2) Mesh size is only a recommendation. A Canam engineer will determine the mesh size.
- (3) One layer of wire mesh on top chord and one layer on high chair.
Slab capacity under concentrated load

MD2000 - Slab capacity chart for unfactored dead load (psf) with concentrated live load

$f'_c = 3,000 \text{ psi, } \rho = 145 \text{ pcf, } F_y = 65,000 \text{ psi}$

<table>
<thead>
<tr>
<th>Concentrated load</th>
<th>Effective slab thickness (total slab)</th>
<th>Mesh size</th>
<th>Joist spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(6 in x 6 in.)</td>
<td>4'-0"</td>
</tr>
<tr>
<td>Classroom/Residential 1 kip on 30 in. x 30 in.</td>
<td>3 in. (4½ in.)</td>
<td>W4 / W4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3½ in. (5 in.)</td>
<td>W4 / W4</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>4 in. (5½ in.)</td>
<td>W4 / W4</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>4½ in. (6 in.)</td>
<td>2 layers W6 / W6</td>
<td>338</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 layers W4 / W4</td>
<td>476</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 layers W4 / W6</td>
<td>339</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 layers W4 / W4</td>
<td>542</td>
</tr>
<tr>
<td>Office 2 kip on 30 in. x 30 in.</td>
<td>3½ in. (5 in.)</td>
<td>W4 / W4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4 in. (5½ in.)</td>
<td>W4 / W4</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>4½ in. (6 in.)</td>
<td>2 layers W6 / W6</td>
<td>274</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 layers W4 / W4</td>
<td>401</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 layers W4 / W6</td>
<td>276</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 layers W4 / W4</td>
<td>428</td>
</tr>
<tr>
<td>Garage 4 kip on 3¾ in. x 4¾ in.</td>
<td>5½ in. + 3 in. High chair (7 in. + 3 in. High chair)</td>
<td>2 layers W6 / W6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 layers W4 / W4</td>
<td>233</td>
</tr>
</tbody>
</table>

MD2000 - Slab capacity chart for unfactored dead load (kPa) with concentrated live load

$f'_c = 20 \text{ MPa, } \rho = 1450 \text{ kg/m}^3, F_y = 450 \text{ MPa}$

<table>
<thead>
<tr>
<th>Concentrated load</th>
<th>Effective slab thickness (total slab)</th>
<th>Mesh size</th>
<th>Joist spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(152 mm x 152 mm)</td>
<td>1,220 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W18 / W18</td>
<td>Exterior</td>
</tr>
<tr>
<td>Classroom/Residential 4.5 kN on 750 mm x 750 mm</td>
<td>76 mm (115 mm)</td>
<td>MW18.7 x MW18.7</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>90 mm (127 mm)</td>
<td>MW25.7 x MW25.7</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>102 mm (140 mm)</td>
<td>MW25.7 x MW25.7</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 layers MW18.7 x MW18.7</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 layers MW25.7 x MW25.7</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 layers MW18.7 x MW18.7</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 layers MW25.7 x MW25.7</td>
<td>25</td>
</tr>
<tr>
<td>Office 9 kN on 750 mm x 750 mm</td>
<td>90 mm (127 mm)</td>
<td>MW25.7 x MW25.7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>102 mm (140 mm)</td>
<td>MW25.7 x MW25.7</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 layers MW18.7 x MW18.7</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 layers MW25.7 x MW25.7</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 layers MW18.7 x MW18.7</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 layers MW25.7 x MW25.7</td>
<td>20</td>
</tr>
<tr>
<td>Garage 18 kN on 120 mm x 120 mm</td>
<td>140 mm + 76 mm</td>
<td>MW18.7 x MW18.7</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>High chair (178 mm + 76 mm High chair)</td>
<td>2 layers MW18.7 x MW18.7</td>
<td>11</td>
</tr>
</tbody>
</table>

Note:

Needs to be used in conjunction with uniform load table.

(1) Only slab portion over the deck is considered for effective slab thickness, concrete in deck flute cannot be considered due to UL ratings.
(2) Mesh size is only a recommendation. A Canam engineer will determine the mesh size.
(3) One layer of wire mesh on top chord and one layer on high chair.
DESIGN PRINCIPLES

NON-COMPOSITE DESIGN

During the formwork installation and pouring process, Hambro joists are considered non-composite. At this stage, the top chord capacity controls the design of the joist.

Load distribution

At this stage, joist members behave in distinct ways:

1. The bottom chord, composed of two angles back-to-back, acts as a tension member.
2. The web, made of bent steel rods, acts as a tension or compression member.
3. The “S” top chord, acts as a compression member.

Non-composite loads

1. Non-composite dead load

 The dead loads considered at the non-composite stage are from the concrete, formwork (deck) and joist selfweight.

 Concrete:
 \[
 \text{slab thickness over the steel deck } \times \text{ concrete density } + 0.33 \times \text{ steel deck thickness } \times \text{ concrete density}
 \]

 *0.33 comes from the fact that the steel deck ribs are filled with concrete by 33% of the sheet thickness.

 Example for a 4½ in. (114 mm) total slab thickness:
 \[
 \left(\frac{\frac{4.5}{2}}{\text{lb./ft}^3} + 0.33 \times \frac{\frac{4.5}{2}}{\text{lb./ft}^3}\right) \times 145 \text{ lb./ft}^2 = 42.23 \text{ psf}
 \]
 \[
 (0.114 - 0.038) \times 22.78 \text{ kN/m}^2 + 0.33 \times 0.038 \times 22.78 \text{ kN/m}^2 = 2.02 \text{ kN/m}^2
 \]

 Formwork and joist:
 \[
 5 \text{ psf (0.24 kN/m}^2\)
 \]

 Total factored dead load:
 \[
 1.25 \times (\text{concrete + formwork + joist})
 \]
 Example:
 \[
 1.25 \times (42.23 + 5) = 59.04 \text{ psf}
 \]
 \[
 (1.25 \times 2.02 + 0.24) = 2.83 \text{ kN/m}^2
 \]

2. Non-composite live load

 Construction live load:
 \[
 20 \text{ psf (0.96 kN/m}^2\)
 \]

 Total factored live load:
 \[
 1.5 \times (\text{construction live load})
 \]
 Example:
 \[
 1.5 \times 20 \text{ psf} = 30 \text{ psf}
 \]
 \[
 (1.5 \times 0.96 \text{ kN/m}^2 = 1.44 \text{ kN/m}^2)
 \]

3. Total factored load

 Example:
 \[
 59.04 + 30 = 89.04 \text{ psf}
 \]
 \[
 (2.83 + 1.44 = 4.27 \text{ kN/m}^2)
 \]
Factored moment resistance

\[M_{nc} = C_e \text{ or } T_e \quad \text{ i.e.} \]

\[\frac{W_{nc} L^2}{8} = C_e \text{ or } T_e \text{ whichever the lesser} \]

Where:

- \(W_{nc} = 89.04 \text{ psf} \left(\frac{4.27 \text{ kN}}{\text{m}} \right) \times \text{joist spacing (plf or kN/m)} \)
- \(L = \text{ joist length (ft. or m)} \)
- \(C_e = \text{ area of top chord} \times \text{factored compressive resistance (kip or kN)} \)
- \(T_e = \text{ area of bottom chord} \times \text{factored tensile resistance (kip or kN)} \)
- \(e = \text{ effective lever arm at non-composite stage} \)
- \(d = \text{ depth of joist (in. or mm)} \)
- \(y_{nc} = \text{neutral axis of bottom chord (in. or mm)} \)

From the above formula, the maximum limiting span may be computed for the non-composite stage. For spans beyond this value, the top chord must be strengthened. Strengthening of the top chord, when required, is usually accomplished by installing one or two rods in the curvatures of the “S” part of the top chord.

As for the bottom chord, it is sized for the total factored load which is more critical than the construction load, the design method is explained in the Composite design section.

Top chord properties

The information below present the Hambro MD2000 top chord properties.

MD2000 top chord geometry

- \(t = 0.09 \text{ in. (2.3 mm)} \)
- \(A_{\text{gross}} = 0.690 \text{ in.}^2 (445.16 \text{ mm}^2) \)
- \(A_{\text{net}} = 0.634 \text{ in.}^2 (409.03 \text{ mm}^2) \)
- \(A_{\text{effective}} = 0.565 \text{ in.}^2 (364.52 \text{ mm}^2) \)
- \(I_{x,\text{gross}} = 0.761 \text{ in.}^4 (3.168 \times 10^6 \text{ mm}^4) \)
- \(I_{y,\text{gross}} = 0.575 \text{ in.}^4 (2.393 \times 10^6 \text{ mm}^4) \)
- \(I_{x,\text{net}} = 0.707 \text{ in.}^4 (2.943 \times 10^6 \text{ mm}^4) \)
- \(I_{y,\text{net}} = 0.537 \text{ in.}^4 (2.235 \times 10^6 \text{ mm}^4) \)
- \(F_{y,\text{top chord}} = 65 \text{ ksi (450 MPa)} \)

Steel deck

It is possible to consider the steel deck acting as a diaphragm at the non-composite stage, i.e. during assembly of the structure. The engineer of records is responsible for calculating the required fasteners (welds or screws).
COMPOSITE DESIGN

Joist composite design

For the design of the composite action, the effective width of concrete slab of an interior joist is taken as the minimum between:

\[b_x = \min \left(\frac{L}{4}; \frac{(L_2 + L_3)}{2} \right) \]

Where:

- \(L \) = span of joist
- \(L_2 \) and \(L_3 \) = spacings adjacent to the joist

Effective width of MD2000 interior joists

For the effective width of concrete slab for a perimeter joist:

\[b_x = L_x + \min \left(\frac{L}{10}; \frac{L_2}{2} \right) \]

Where:

- \(L \) = span of joist
- \(L_x \) = length of cantilever
- \(L_2 \) = first interior joist spacing

Effective width of MD2000 perimeter joists
Flexure design

The flexure design is calculated with the ultimate strength approach which is based on the actual failure strengths of the component materials. This method is initially used for composite beam or joist with stud connectors but is applicable to the Hambro MD2000 joist.

Load capacity calculations involve the equilibrium of internal factored forces $C'_r = T_r$. In order to use this method, some assumptions need to be made:

1. The plastic neutral axis is strictly in the slab so that the whole steel section of the system works in tension.
2. The wire mesh reinforcement in the slab has been neglected in compression.
3. $\alpha_1 = 0.85$ since $f'_c \leq 4.35$ ksi (30 MPa).
4. Composite action is considered at 100%.

The simplified concrete stress block, as shown above is universally used to find the ultimate tension. According to CAN/CSA-S16, clause 17.9.3, and CAN/CSA A23.3, clause 10.1.7, the factored resisting moment of the composite section is given by:

$$M_{rc} = \varnothing_s A_b f'_{ye} = T re'$$

Where:

- e' = lever arm at composite stage = $d + \text{slab thickness} - a/2 - y_{wc}$, in. (mm)
- d = joist depth, in. (mm)
- y_{wc} = neutral axis of bottom chord, in. (mm)
- a = depth of compression block = $\varnothing_s A_f f_c'$, in. (mm)
- $\varnothing_s = 0.9$
- A_f = area of bottom chord, in.2 (mm2)
- f_c' = concrete compressive strength, ksi (MPa)
- b_e = effective width of concrete, in. (mm)

The factored resisting moment can then be compared to the factored moment:

$$M_f = \frac{W_f L^2}{8}$$

Where:

- W_f = total factored uniform load, plf (kN/m)
- L = span of joist, ft. (m)

Web design

Vertical shear

The web of the steel joist is designed according to CAN/CSA-S16, clause 17.3.2, requires the web system to be proportioned to carry the total vertical shear V_f.

According to clause 16.5.1, the loading applied to the joist is as follows:

1. The total factored dead and live loads specified by the building designer.
2. The total dead load and an unbalanced load of 100% of the live load on any continuous portion of the joist and 0% of the live load on the remainder to produce the most critical effect on any component.
3. Factored dead load plus the appropriate factored concentrated load from the NBCC applied at any panel point to produce the most critical effect on any web members.

The above loadings do not need to be applied simultaneously.
Tension and compression diagonal

The web members are sized for the specified loading including concentrated loads where applicable.

The effective length of web member Kl is taken from the chord neutral axis to the bottom chord neutral axis.

![Diagram of web member](image)

Length “I” of MD2000 web member

For webs in tension, the slenderness ratio is not limited (clause 16.5.8.5), they are dimensioned using clause 13.2; generally this formula controls:

\[
T_r = \phi A_f F_y
\]

For webs in compression, the slenderness ratio shall not exceed 200 (clause 16.5.8.6); they are dimensioned using clause 13.3. Rods are used, therefore this equation applies:

\[
C_r = \phi A F_r (1 + \lambda^2 \gamma)^{-1/n}
\]

Where:

\[
\lambda = \sqrt{\frac{F_r}{F_y}}
\]

\[
F_r = \frac{\pi^2 E}{(Kl/r)^2}, \text{ ksi (MPa)}
\]
Interface shear

The Hambro joist comprises a composite concrete slab-steel joist system with composite action achieved by the shear connection developed by two mechanisms:

1. Horizontal bearing forces
 The bearing shoes of the joist consist of angles that are embedded in the concrete. They act as anchorage for the first diagonal member producing a horizontal bearing force when the joist is loaded.

2. Steel/concrete interface
 Once embedded in the slab, the top chord bonds with the concrete in order to provide a shear-friction resistance. There are also holes in the “S” part of the top chord, which help reinforce the bond between the steel/concrete interface.

Shear resistance of the steel/concrete interface can be evaluated by either elastic or ultimate strength procedures; both methods have shown good correlation with the test results. The interface shear force resulting from superimposed loads on the composite joist may be computed, using the “elastic approach” by the equation:

\[q = \frac{VQ}{I} \]
Where:

\[q = \text{horizontal shear flow, lb./in. (N/mm)} \]

\[V = \text{vertical shear force due to superimposed loads, lb. (N)} \]

\[I_c = \text{moment of inertia of the composite joist, in.}^2 \text{ (mm}^4) \]

\[Q = \text{static moment of the effective concrete in compression} \]

(hatched area) about the elastic neutral axis of the composite section, in.\(^3\) (mm\(^3\))

\[= (by/n)(Y_c - y/2) \text{ and } y = y_c \leq t \]

\[b_c = \text{concrete width, in. (mm)} \]

\[n = \text{modular ratio} \]

\[= E_s/E_c = 9.4 \text{ (for } f_c' = 3 \text{ ksi (20 MPa)}) \]

\[t = \text{slab thickness, in. (mm)} \]

\[Y_c = \text{depth of neutral axis from top of concrete slab, in. (mm)} \]

\[Y_c = \text{neutral axis of composite joist, in. (mm)} \]

\[= Y_c \rightarrow \text{when elastic neutral axis lies within slab} \]

\[= t \rightarrow \text{when elastic neutral axis lies outside slab} \]

Case 1: N.A. within the slab \((y = Y_c)\)

Case 2: N.A. outside the slab \((y = t)\)
The most recent full testing programs have consistently established a failure value for the horizontal bearing forces and the friction between steel and concrete. An additional contributing factor is a hole in the section at each 7 in. (178 mm) on the length.

1. Horizontal bearing forces
 The test has defined an ultimate value for the end bearing shoe equal to 50 kip (222 kN) for a concrete strength of 3 ksi (20 MPa).

2. Friction between concrete and top chord
 The failure value for the interface shear is 255 lb./in. (44.7 N/mm).

Slab Design

Note: The calculations attached to slab design are metric only.

The slab component of the MD2000 Hambro composite floor system behaves as a oneway slab carrying loads transversely to the joists. The slab design is based on CAN/CSA-A23.3, Design of Concrete Structures. This standard stipulates that in order to provide adequate safety level, the factored effects shall be less than the factored resistance.

Note:

For the MD2000 product, it is not possible to consider the steel deck and concrete within the steel deck’s ribs in the calculation of the slab capacity due to fire rating restrictions.

Uniform load – load distribution

Continuous span

The standard CAN/CSA-A23.3, clause 9.2.3.1, requires that factored dead load to act simultaneously with the factored live load apply on:

- Adjacent spans (maximum negative moment at support); or
- Alternate spans (maximum positive moment at mid-span).

If criteria (a) to (e) of clause 9.3.3 are satisfied, the following approximate value may be used in the design of one-way slabs. Refer to the figure below for location of moments and shear efforts.
1. Positive moment
 Exterior span (location 1): \(M_f = \frac{W_f L_1^2}{11} \)
 Interior span (location 3): \(M_f = \frac{W_f L_i^2}{16} \)

2. Negative moment
 First interior support (location 2): \(M_f = \frac{W_f L_a^2}{10} \)
 Other interior support (location 4): \(M_f = \frac{W_f L_a^2}{11} \)

3. Shear
 Face of first interior support (location 2): \(V_f = 1.15 \frac{W_f L_1}{2} \)
 Other interior support (location 4): \(V_f = \frac{W_f L_i}{2} \)

Where:
\(W_f \) = total factored design load \((kN/m)\)
\(L_1 \) = first span (exterior span) \((m)\)
\(L_i \) = interior spans → joist spacing \((m)\)
\(L_a \) = average of two adjacent spans \((m)\)

Single span
However, if at least one of the criteria of CAN/CSA-A23.3, clause 9.3.3, is not met, the slab must be considered as simply supported and the distribution of forces will be as follow (refer to the figure on page 95 for location of moment and shear):

1. Positive moment
 All spans (locations 1 and 3): \(M_f = \frac{W_f L^2}{8} \)

2. Shear
 All supports: \(V_f = \frac{W_f L}{2} \)

Concentrated load – load distribution
In addition to the previous verification, the Division B of the National Building Code of Canada (NBCC), clause 4.1.5.9 1), requires consideration for a minimum concentrated live load to be applied over a specified area. The magnitude of the load depends on the occupancy. This loading does not need to be considered to act simultaneously with the specified uniform live load.

The area of an applied concentrated load on the slab can be distributed laterally to reduce its intensity. Since the Canadian codes and standards do not provide a precise method, the following calculations for the effective widths of concentrated load, \(b_e \), are based on the SDI approach. CSSBI standard 12M-15 states that for special cases not covered, it is possible to refer to other standards.

1. For moment calculation:
 \(b_e = b_m + \frac{4}{3} (1 - \frac{x}{L_i}) x \leq 106.8 \left(\frac{t}{h} \right) \)

2. For shear calculation:
 \(b_e = b_m + (1 - x/L_i) x \)

Where:
\(b_m = b_c + 2 t_c \) (mm)
\(b_e \) = load width (mm)
\(t_c \) = slab thickness (mm)
Concentrated load distribution for effective width
Moment Capacity

The factored moment resistance (M_r) of a reinforced concrete section, using an equivalent rectangular concrete stress distribution is given by (CAN/CSA-A23.3, clause 10.1.7):

$$M_r = \emptyset_s A_s F_y (d - a / 2)$$

$$a = \frac{\emptyset_s A_s F_y}{a \emptyset c f'_c b}$$

$$\alpha_i = 0.85 - 0.0015 f'_c \geq 0.67$$

Where:

- $a = $ depth of the equivalent concrete stress block (mm)
- $F_y = $ yield strength of reinforcing steel (450 MPa min.)
- $f'_c = $ compressive strength of concrete (20 MPa min.)
- $A_s = $ area of reinforcing steel in the direction of analysis (mm²/m width)
- $b = $ unit slab width (mm)
- $d^* \text{ or } d = $ distance from extreme compression fiber to centroid of tension reinforcement (mm)
- $t = $ thickness of the slab (mm)
- $\emptyset_s = $ performance factor of reinforcing steel (0.85)
- $\emptyset_c = $ performance factor of concrete (0.65)
Shear Capacity

The shear stress capacity (V_r), which is a measure of diagonal tension, is unaffected by the embedment of the top chord section as this principal tensile crack would be angled and radiate away from the top chord. The factored shear capacity is given by CAN/CSAA23.3, clause 11.3.4:

$$V_r = V_c = \varnothing \beta \sqrt{f', b_n d_i}$$

Where:

- $\lambda = 1$ (for normal density concrete)
- $\beta = \frac{230}{(1,000 + d_i)}$
- $d_o = 0.9 \, d^* \text{ or } 0.9 \, d \geq 0.72 \, t \, (mm)$
- d^* or d = distance from extreme compression fiber to centroid of tension reinforcement (mm)
- $b_n = b = \text{width of the slab (mm)}$

Serviceability limit states

Crack control parameter

When the specified yield strength, F_y, for tension reinforcement exceeds 300 MPa, cross sections of maximum positive and negative moments shall be so proportioned that the quantity Z does not exceed 30,000 N/mm for interior exposure and 25,000 N/mm for exterior exposure. Refer to CSA A23.3, clause 10.6.1.

The quantity Z limiting distribution of flexural reinforcement is given by:

$$Z = f, \sqrt{d/A}$$
Hambro MD2000 Composite Floor System

Where:

\[f_r = \text{stress in reinforcement at specified loads taken as 0.6} \ F_c \ (\text{MPa}) \]
\[d_c = \text{thickness of concrete cover measure from extreme tension fibre} \]
\[\text{to the center of the reinforcing bar located closest thereto} \leq 50 \text{ mm} \]
\[A = 2d_c \times \text{wire mesh spacing, (mm}^2) \]

\[L_i = \text{spacing between joists (mm)} \]

Deflection control

For one-way slabs not supporting or attached to partitions of other construction likely to be damaged by large deflections, deflection criteria are considered to be satisfied if the following span/depth ratio are met (CAN/CSA-A23.3, Table 9.2):

Exterior span: \(t \geq L/24 \)
Interior span: \(t \geq L/28 \)

Slab design example

Verify the standard Hambro slab under various limit states (strength and serviceability) for residential loading.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead load</td>
<td>3.5 kPa</td>
</tr>
<tr>
<td>Live load</td>
<td>1.9 kPa</td>
</tr>
<tr>
<td>Concentrated load</td>
<td>4.5 kN on 750 mm x 750 mm everywhere</td>
</tr>
<tr>
<td>Total slab thickness</td>
<td>115 mm</td>
</tr>
<tr>
<td>Slab thickness (t)</td>
<td>76 mm</td>
</tr>
<tr>
<td>Joists spacing (L_i)</td>
<td>1,220 mm</td>
</tr>
<tr>
<td>Concrete strength (f')</td>
<td>20 MPa</td>
</tr>
<tr>
<td>Wire mesh</td>
<td>152 x 152 MW25.7 x MW25.7</td>
</tr>
<tr>
<td>Area of steel (A_s)</td>
<td>170 mm²/mm</td>
</tr>
<tr>
<td>Wire mesh diameter</td>
<td>5.74 mm</td>
</tr>
</tbody>
</table>
1. Loads and efforts per meter of slab

Factored load
\[W_f = 1.25 \times 3.5 + 1.5 \times 1.9 = 7.23 \text{ kN/m}^2 \]

Maximum positive moment at location 1
\[M_f^+ = \frac{7.23 \times 1.22^2}{11} \times 1 \text{ m} = 0.98 \text{ kNm} \]

Maximum negative moment at location 2
\[M_f^- = \frac{7.23 \times 1.22^2}{10} \times 1 \text{ m} = 1.08 \text{ kNm} \]

Maximum shear
\[V_f = \frac{1.15 \times 7.23 \times 1.22}{2} = 5.07 \text{ kN} \]

2. Resistance under uniform load

Positive moment capacity
\[d^+ = t - 38.1 \text{ mm} - \frac{Q_{neutral}}{2} \]
\[d^+ = 76 - 38.1 - \frac{5.74}{2} = 35.03 \text{ mm} \]
\[a_1 = 0.85 - 0.0015 \times 20 = 0.82 \geq 0.67 \rightarrow \text{OK} \]
\[a = \frac{\varnothing A F_y}{a_1 \varnothing c f'c_b} = \frac{0.85 \times 170 \times 450}{0.82 \times 0.65 \times 20 \times 1000} = 6.1 \text{ mm} \]
\[M_f^+ = \varnothing A F_y (d^+ - a/2) = 0.85 \times 170 \times 450 (35.03 - 6.1/2) = 2.08 \text{ kNm} > M_f^+ = 0.98 \text{ kNm} \rightarrow \text{OK} \]

Negative moment capacity
\[d^- = t - d^+ \]
\[d^- = 76 - 35.03 = 40.97 \text{ mm} \]
\[a_1 = 0.85 - 0.0015 \times 20 = 0.82 \geq 0.67 \rightarrow \text{OK} \]
\[a = \frac{\varnothing A F_y}{a_1 \varnothing c f'c_b} = \frac{0.85 \times 170 \times 450}{0.82 \times 0.65 \times 20 \times 1000} = 6.1 \text{ mm} \]
\[M_f^- = \varnothing A F_y (d^- - a/2) = 0.85 \times 170 \times 450 (40.97 - 6.1/2) = 2.47 \text{ kNm} > M_f^- = 1.08 \text{ kNm} \rightarrow \text{OK} \]

Shear capacity
\[d_s = 0.9 \times d^+ \geq 0.72 t \]
\[d_s = 0.9 \times 40.97 \geq 0.72 \times 76 \rightarrow 36.87 \text{ mm} \geq 54.72 \text{ mm} \rightarrow d_s = 54.72 \text{ mm} \]
\[\beta = \frac{230}{(1000 + d_s)} \]
\[\beta = \frac{230}{(1000 + 54.72)} = 0.218 \]
\[V_f = \varnothing A \beta \sqrt{f',b_s d_s} \]
\[V_f = 0.65 \times 1 \times 0.218 \sqrt{20 \times 1000 	imes 54.72} = 34.68 \text{ kN} > V_f = 5.07 \text{ kN} \]
3. Resistance under concentrated load

Refer to table Slab capacity under concentrated load on page 87.

The slab can carry a dead load of 5 kPa which is higher than the specified loads of 3.5 kPa. Then, the reinforcement is ok.

4. Serviceability

Crack control

\[d_c = \frac{m \times (t - 3.81 - \frac{\phi \times m \times e_s}{2})}{2} = 40.97 \text{ mm} \]

\[A = 2 \times 40.97 \times 152 = 12,454.88 \text{ mm}^2 \]

\[f_s = 0.6 \times F_y \]

\[f_s = 0.6 \times 450 = 270 \text{ MPa} \]

\[Z = \frac{f_s \sqrt{d_c \times A}}{270} = \frac{21,576}{30,000} < 1 \rightarrow \text{OK} \]

Deflection control

\[\frac{\text{span}}{\text{depth}} = \frac{1.220}{76} = 16.05 \]

Exterior span: \(t \geq \frac{L_{ext}}{24} \rightarrow t \geq \frac{1.220}{24} = 50.83 > 16.05 \rightarrow \text{OK} \)

Interior span: \(t \geq \frac{L_{int}}{28} \rightarrow t \geq \frac{1.220}{28} = 43.57 > 16.05 \rightarrow \text{OK} \)

DIAPHRAGM

Note: The calculations attached to diaphragm design are metric only.

THE HAMBRO SLAB AS A DIAPHRAGM

With the increasing use of the Hambro system for floor-building in earthquake or in hurricane prone areas as well as for multi-story buildings where shear transfer could occur at some level of the building due to the reduction of the floor plan, it is important to develop an understanding of how the slabs will be able to transmit horizontal loads while being part of the Hambro floor system. Note that the deck cannot be used structurally for the diaphragm at the composite stage, it is used only for the formwork or for the diaphragm during the erection of the structure.

The floor slab, part of the Hambro system, must be designed by the project structural engineer as a diaphragm to resist horizontal loads and transmit them to the vertical resisting system. Take note that the Hambro joist doesn’t transfer lateral loads and that drag struts or connectors should be designed in order to transfer these loads to the perimeter elements. The Canam engineering team is available for technical support for diaphragm design.

A diaphragm works as the web of a beam spanning between or extending beyond the supports. In the case of a floor slab, the slab is the web of the beam spanning between or extending beyond the vertical elements designed to transmit to the foundations the horizontal loads produced by earthquake or wind.

Any diaphragm has the following limit states:

1. Shear strength between the supports;
2. Out of plane buckling;
3. In plane deflection of the diaphragm;
4. Shear transmission at the supports.
We will use a simple example of wind load acting on a diaphragm part of a horizontal beam forming a single span between end walls. The structural engineer responsible for the design of the building shall establish the horizontal loads that must be resisted at each floor of the building for the wind and earthquake conditions prevailing at the building location. The structural engineer must also identify the vertical elements that will transmit the horizontal loads to the foundations in order to calculate the shear that must be resisted by the floor slab.

Shear strength between supports

A series of fourteen specimens of concrete slabs, part of a Hambro D500 floor system, were tested in the Carleton University’s laboratories in Ottawa. Since MD2000 works on the same principles, these results are applicable as well. The purpose of the tests was to identify the variables affecting the in-plane shear strength of the concrete slab reinforced with welded wire mesh.

The specimens were made of slabs with a concrete thickness of 64 mm or 68 mm forming a beam with a span of 610 mm and a depth of 610 mm. This beam was loaded with two equal concentrated loads at 152 mm from the supports. The other variables were:

1. The size of the wire mesh;
2. The presence or absence of the Hambro joist’s embedded top chord parallel to the load in the shear zone;
3. The concrete strength.

It was found that the shear resistance of the slab is minimized when the shear stress is parallel to the Hambro joist’s embedded top chord. A conservative assumption could be made that the concrete confined steel wire mesh is the only element that will transmit the shear load over the embedded top chord. In other cases, the shear forces are taken up by the reinforced concrete slab and calculated by the structural engineer responsible for the design of the building.

As recommended in the report produced as a result of tests conducted at the Carleton University, in the following example of the design procedure, we will take into account that the steel wire mesh is already under tension stress produced by the continuity of the slab over the Hambro joist, and that the remaining capacity of the steel wire mesh will be the limiting factor for the shear strength of the slab over the Hambro joist.

Design example

The diaphragm example (see figure on page 104) illustrates a simple building with a slab in diaphragm. Hambro system values are taken from the slab design example on page 100. Other necessary values are listed below.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total wind pressure load from leeward and windward faces (W)</td>
<td>1.2 kPa</td>
</tr>
<tr>
<td>Story height (hs)</td>
<td>3.7 m</td>
</tr>
<tr>
<td>Span of the beam with the floor slab acting as web (Lb)</td>
<td>35.5 m</td>
</tr>
<tr>
<td>Length of the walls parallel to the horizontal force (B)</td>
<td>18.3 m</td>
</tr>
</tbody>
</table>
1. Non-factored moments

The ending moment over the embedded top chord is calculated for one-meter width. In using the data from the slab design example, the non-factored moments for a joist with a spacing of 1,220 mm is:

Dead load: \(M_d = \frac{3.5 \text{kPa} \times 1.22^2}{10} \times 1 \text{m} = 0.52 \text{kNm} \)

Live load: \(M_l = \frac{1.9 \text{kPa} \times 1.22^2}{10} \times 1 \text{m} = 0.28 \text{kNm} \)

2. Bending moment in the slab between joists due to gravity loads

The lever arm between the compression concrete surface and the tension steel of the wire mesh at the top chord allows us to calculate the factored bending capacity of the slab to be \(M_r = 2.47 \text{kNm} \).

3. Horizontal shear

We can establish the horizontal shear that the floor diaphragm will have to resist in order to transfer the horizontal load from the walls facing the wind to the perpendicular walls where a vertical lateral resisting system will bring that load down to the foundation.

For the purpose of our example, the factored wind load is the maximum horizontal load calculated according to the provisions of the local building code, but earthquake load shall also be calculated by the structural design engineer of the project and the maximum of the two loads should be used in the calculation.

\[
V_r = h \frac{W L_t}{2}
\]

\[
= 3.7 \times 1.2 \times \frac{35.5}{2}
\]

\[
= 78.8 \text{kN}
\]

In our example, the end reaction is distributed along the whole length (18.3 m) of the end wall used to transfer the load.

\[
q_w = \frac{78.8}{18.3}
\]

\[
= 4.3 \text{kNm}
\]
4. Steel shear capacity

To establish the shear capacity of steel wire mesh for a slab unit width of one meter, we use the following formula adapted from CSA-A23.3, clause 11.5, and simplify it to calculate the resistance of the reinforcing steel only, considering a shear crack developing at a 45 degree angle and intersecting the wire mesh in both directions.

\[q_r = \varphi_A F_y \cos 45^\circ \]
\[= (0.85 \times 2 \times 170 \times 450 \cos 45^\circ)/1,000 \]
\[= 91.96 \text{ kN/m} \]

The steel area is multiplied by two since the crack is developing at a 45 degree angle, crossing both directions of the wire mesh.

5. Interaction formulas

Considering the reduction factor from the NBCC for the simultaneity of gravity live load and horizontal wind load for our example, the structural engineer of the project needs to verify the diaphragm capacity of the floor slab and its reinforcement by verifying that the moment and shear interaction formulas used below are less than unity:

Load Combination 1:
\[1.25 \frac{M_d}{M_r} + 1.5 \frac{M_L}{M_r} \leq 1 \]
\[1.25 \frac{0.49}{2.47} + 1.5 \frac{0.30}{2.47} = 0.43 \leq 1 \rightarrow \text{OK (Doesn’t control)} \]

Load Combination 2:
\[1.25 \frac{M_d}{M_r} + 1.5 \frac{M_L}{M_r} + 0.4 \frac{q_w}{q_r} \leq 1 \]
\[1.25 \frac{0.52}{2.47} + 1.5 \frac{0.28}{2.47} + 0.4 \frac{4.3}{91.96} = 0.45 \leq 1 \rightarrow \text{OK (Controls)} \]

Load Combination 3:
\[1.25 \frac{M_d}{M_r} + 0.5 \frac{M_L}{M_r} + 1.4 \frac{q_w}{q_r} \leq 1 \]
\[1.25 \frac{0.52}{2.47} + 0.5 \frac{0.28}{2.47} + 1.4 \frac{4.3}{91.96} = 0.38 \leq 1 \rightarrow \text{OK (Doesn’t control)} \]

These verifications indicate that the wire mesh embedded in the slab would provide enough shear strength to transfer those horizontal loads over the Hambro joist.

Out of plane buckling

The floor slab, when submitted to a horizontal shear load, may tend to buckle out of plane like a sheet of paper being twisted. The minimum thickness of Hambro concrete slab of 76 mm plus deck of 38 mm are properly held in place by the Hambro joists spaced at a maximum of 1,829 mm which are attached at their ends to prevent vertical movement. The buckling length of the slab itself will then be limited to the spacing of the joist and the buckling of a floor will normally not be a factor in the design of the slab as a diaphragm.

In plane deflection of the diaphragm

As for every slab used as a diaphragm, the deflection of the floor as a horizontal member between the supports provided by the vertical bracing system shall be investigated by the structural engineer of the building to verify that the horizontal deflection remains within the allowed limits.

Beam effect

The structural engineer of the project shall indicate the required steel reinforcement on his drawings according to the beam effect calculations.

Shear transmission to the vertical bracing system

The structural engineer of the project shall design and indicate on his drawings proper methods and/or reinforcement to attach the slab to the vertical bracing system over such a length as to prevent local overstress of the slab capacity to transfer shear.
ENGINEERING TYPICAL DETAILS – HAMBRO MD2000 (MDH SERIES)

DETAIL 40

MD2000 STANDARD SHOE

T+1/6" (48 mm) = TOTAL SLAB THICKNESS + DECK THICKNESS + TOP CHORD THICKNESS + SHOE THICKNESS

DETAIL 41

BOLTED JOIST ON STEEL COLUMN (FLANGE, WEB)

T+1/6" (48 mm) = TOTAL SLAB THICKNESS + DECK THICKNESS + TOP CHORD THICKNESS + SHOE THICKNESS

* WHEN DEEP SHOE, THE C/C OF HOLE IS DIFFERENT, CONSULT THE APPROPRIATE DETAILS ON PLAN.
DETAIL 42

BOLTED JOIST ON INTERIOR STEEL BEAM

2 - 1/2" (M12) BOLTS ASTM A307
3/4" x 3/4" (14x17 mm) SLOTS @ 4" (100 mm) c/c (HAMBRO SHOE)

1/2" (14 mm) Ø HOLES @ 4" (100 mm) c/c (SUPPORT) U.N.O.

2 - 3/4" (M20) BOLTS ASTM A325
1/2" x 1/2" (21x32 mm) SLOTS @ 5" (125 mm) c/c (HAMBRO SHOE)

1/4" (6 mm) Ø HOLES @ 5" (125 mm) c/c (SUPPORT) U.N.O.

NOMINAL JOIST DEPTH (D)

NOMINAL SLAB (T)

TOTAL SLAB

STEEL DECK (TYP.)

T + 1 1/2" (48 mm) = TOTAL SLAB THICKNESS + DECK THICKNESS + TOP CHORD THICKNESS + SHOE THICKNESS

NOTE:
STAGGERED JOISTS, IF THE FLANGE BEAM IS LESS THAN 8" (203 mm),
* WHEN DEEP SHOE, THE CC OF HOLE IS DIFFERENT, CONSULT THE APPROPRIATE DETAILS ON PLAN.

DETAIL 43

JOIST BEARING ON EXTERIOR MASONRY OR CONCRETE WALL

3/2" (89 mm) MIN. BEARING FOR 4" (102 mm) SHOE (TYP.)

JOIST SHOE ANCHORED TO SUPPORT WITH TAPCON CONCRETE SCREW OR EQUIVALENT 9/4" x 1 1/2" (6x44 mm) LENGTH MIN.

STEEL DECK

T + 1 1/2" (48 mm) = TOTAL SLAB THICKNESS + DECK THICKNESS + TOP CHORD THICKNESS + SHOE THICKNESS
Hambro MD2000 Composite Floor System

DETAIL 44

JOIST BEARING ON INTERIOR MASONRY OR CONCRETE WALL

![Diagram of Detail 44](image)

- **3½" (89 mm) MIN. BEARING FOR 4" (102 mm) SHOE (TYP.)**
- **JOIST SHOE ANCHORED TO SUPPORT WITH TAPCON CONCRETE SCREW OR EQUIVALENT 6/16"x1½" (6x44 mm) LENGTH MIN.**
- **STELLED DECK (TYP.)**
- **CEILING EXTENSION (TYP.)**

NOTE:

- STAGGERED JOISTS, IF THE WALL IS LESS THAN 8" (203 mm).

T+1½" (48 mm) = TOTAL SLAB THICKNESS + DECK THICKNESS + TOP CHORD THICKNESS + SHOE THICKNESS

DETAIL 45

JOIST BEARING ON EXTERIOR INSULATED CONCRETE WALL

![Diagram of Detail 45](image)

- **3½" (89 mm) MIN. BEARING FOR 4" (102 mm) SHOE (TYP.)**
- **JOIST SHOE ANCHORED TO SUPPORT WITH TAPCON CONCRETE SCREW OR EQUIVALENT 6/16"x1½" (6x44 mm) LENGTH MIN.**
- **STEEL DECK**
- **CEILING EXTENSION**
- **NOTCH RIGID INSULATION**

T+1¼" (48 mm) = TOTAL SLAB THICKNESS + DECK THICKNESS + TOP CHORD THICKNESS + SHOE THICKNESS
DETAIL 46

JOIST BEARING ON INTERIOR INSULATED CONCRETE WALL

T + 1/8" (48 mm) = TOTAL SLAB THICKNESS + DECK THICKNESS + TOP CHORD THICKNESS + SHOE THICKNESS

NOTE:
STAGGERED JOISTS, IF THE WALL IS LESS THAN 8" (203 mm).

DETAIL 47

JOIST BEARING ON EXTERIOR STEEL BEAM

T + 1/8" (48 mm) = TOTAL SLAB THICKNESS + DECK THICKNESS + TOP CHORD THICKNESS + SHOE THICKNESS
DETAIL 48
JOIST BEARING ON INTERIOR STEEL BEAM

NOTE:
STAGGERED JOISTS, IF THE FLANGE BEAM IS LESS THAN 8" (203 mm).

DETAIL 49
JOIST BEARING ON EXTERIOR STEEL STUD WALL

NOTE:
MECHANICAL FASTENERS OR ACCORDING TO THE MATERIALS THICKNESS

T+1/4" (48 mm) = TOTAL SLAB THICKNESS + DECK THICKNESS + TOP CHORD THICKNESS + SHOE THICKNESS
DETAIL 50

JOIST BEARING ON INTERIOR STEEL STUD WALL

NOTE: STAGGERED JOISTS, IF THE WALL IS LESS THAN 8" (203 mm).

T+1/2" (48 mm) = TOTAL SLAB THICKNESS + DECK THICKNESS + TOP CHORD THICKNESS + SHOE THICKNESS

DETAIL 51

JOIST BEARING ON EXTERIOR WOOD STUD WALL

T+1/8" (48 mm) = TOTAL SLAB THICKNESS + DECK THICKNESS + TOP CHORD THICKNESS + SHOE THICKNESS
DETAIL 52

JOIST BEARING ON INTERIOR WOOD STUD WALL

NOTE:
STAGGERED JOISTS, IF THE WALL IS LESS THAN 8" (203 mm).

DETAIL 53

EXPANSION JOINT AT ROOF

NOTE:
EXPANSION JOINT DETAILS ACCORDING TO THE SPECIFICATIONS OF THE CONSULTING ENGINEER
BEARING DETAILS ACCORDING TO CANAM SPECIFICATIONS
DETAIL 54

EXPANSION JOINT
AT ROOF (STEEL BEAM)

BEARING DETAILS ACCORDING TO CANAM SPECIFICATIONS

EXPANSION JOINT DETAILS ACCORDING TO THE SPECIFICATIONS OF THE CONSULTING ENGINEER

STEEL DECK (TYP.)

CEILING EXTENSION (TYP.)

T+17/8 (48 mm) = TOTAL SLAB THICKNESS + DECK THICKNESS + TOP CHORD THICKNESS + SHOE THICKNESS

DETAIL 55

JOIST PARALLEL TO EXPANSION JOINT

BEARING DETAILS ACCORDING TO CANAM SPECIFICATIONS

EXPANSION JOINT DETAILS ACCORDING TO CONSULTING ENGINEER SPECIFICATIONS

STEEL DECK

CONCRETE, ICF, WOOD OR MASONRY WALL

T+17/8 (48 mm) = TOTAL SLAB THICKNESS + DECK THICKNESS + TOP CHORD THICKNESS + SHOE THICKNESS
DETAIL 56
JOIST PARALLEL TO MASONRY OR CONCRETE WALL

STEEL DECK ANCHORED TO THE WALL WITH TAPCON CONCRETE SCREW
φ ¼"x1½" (6x44 mm) LENGTH MIN.

T+1¼" (48 mm) = TOTAL SLAB THICKNESS + DECK THICKNESS + TOP CHORD THICKNESS + SHOE THICKNESS

DETAIL 57
JOIST PARALLEL TO INSULATED CONCRETE WALL

STEEL DECK ANCHORED TO THE WALL WITH TAPCON CONCRETE SCREW
φ ½"x1¾" (6x44 mm) LENGTH MIN.

T+1½" (48 mm) = TOTAL SLAB THICKNESS + DECK THICKNESS + TOP CHORD THICKNESS + SHOE THICKNESS
Hambro MD2000 Composite Floor System

DETAIL 58

JOIST PARALLEL TO A STEEL BEAM

HILTI STEEL DECK FASTENERS:
- HSN24 FOR $\frac{3}{8}$" (3 mm) < t < $\frac{3}{4}$" (10 mm)
- EPN19 FOR t > $\frac{3}{8}$" (6 mm)

$\#_{12}$ SELF TAPPING FASTENERS OR

$\frac{3}{4}$" (19 mm) c/c

$\frac{1}{2}$" (38 mm) MIN. (TYP.)

T + $\frac{1}{2}$" (48 mm) = TOTAL SLAB THICKNESS + DECK THICKNESS + TOP CHORD THICKNESS + SHOE THICKNESS

DETAIL 59

JOIST PARALLEL TO A STEEL STUD WALL

HILTI STEEL DECK FASTENERS:
- HSN24 FOR $\frac{3}{8}$" (3 mm) < t < $\frac{3}{4}$" (10 mm)
- EPN19 FOR t > $\frac{3}{8}$" (6 mm)

$\#_{12}$ SELF TAPPING FASTENERS OR

$\frac{3}{4}$" (19 mm) c/c

$\frac{1}{2}$" (38 mm) MIN. (TYP.)

T + $\frac{1}{2}$" (48 mm) = TOTAL SLAB THICKNESS + DECK THICKNESS + TOP CHORD THICKNESS + SHOE THICKNESS
DETAIL 60

MINIMUM CLEARANCE OPENING AND HOLE IN THE SLAB

- 6" (152 mm) MIN.
- OPENING (SEE STANDARD REINFORCEMENT FOR SLAB OPENING)
- 6" (152 mm) MIN.
- DIAMETER LESS THAN 6" (127 mm)
- NO ADDITIONAL REINFORCEMENT REQUIRED, IF:
 - MINIMUM DISTANCE C/C OF DRILLED HOLES IS Z-6" (150 mm) AND;
 - ONLY ONE STRAND OF STEEL PERPENDICULAR TO JOISTS IS CUT PER HOLE.
 IF NOT: SEE STANDARD REINFORCEMENT FOR SLAB OPENING

- 1/8" (19 mm) MIN.
- END OF SLAB
- TEMPORARY SUPPORT

- 1/8" (19 mm) MIN.
- STEEL DECK

- REBARS SHOULD BE PLACED AROUND SLAB OPENING

IF SLAB OPENING IS:
- LESS THAN 1'-6" (430 mm), REINFORCE THE AREA WITH AN ADDITIONAL LAYER OF WIRE MESH LAPPED 1'-0" (305 mm) ALL AROUND OPENING.
- 1'-6" (430 mm) OR MORE, FOLLOW THE ENGINEER OF RECORD'S DETAIL.

STANDARD REINFORCEMENT FOR SLAB OPENING
DETIAL 61
JOIST PARALLEL TO A WOOD WALL

STEEL DECK ANCHORED TO THE PLANK WITH TWO WOOD SCREWS #12 OR NAILS @ 12" (305 mm) c/c

T + 1/8" (48 mm) = TOTAL SLAB THICKNESS + DECK THICKNESS + TOP CHORD THICKNESS + SHOE THICKNESS

DETIAL 62
THICKER SLAB

ADDITIONAL ANGLE WELDED TO THE TOP CHORD TO GET A THICKER SLAB OF 2" (50 mm) AND MORE (SEE DETAIL 65)
DETAIL 63
HEADER SUPPORT

NOTE:
IF THERE IS A JOIST SITTING ON THE HEADER BEAM, THE DIMENSION
3/8" (80 mm) WILL BECOME 3 1/8" (86 mm) AND "T" WILL BECOME
"T+1 1/2" (48 mm) = TOTAL SLAB THICKNESS + DECK THICKNESS + TOP
CHORD THICKNESS + SHOE THICKNESS.

DETAIL 64
CANTILEVERED BALCONY
(JOIST PERPENDICULAR TO BALCONY)
DETAIL 65
CANTILEVERED BALCONY
(SHALLOW JOIST PARALLEL TO BALCONY)

IMPORTANT:
BRIDGING ANGLES, TO BE INSTALLED AFTER FORMS, ARE STRIPPED BUT BEFORE REMOVAL OF CANTILEVER TEMPORARY SUPPORTS.

DETAIL 66
CANTILEVERED BALCONY
(JOIST PARALLEL TO BALCONY)

IMPORTANT:
BRIDGING ANGLES, TO BE INSTALLED AFTER FORMS, ARE STRIPPED BUT BEFORE REMOVAL OF CANTILEVER TEMPORARY SUPPORTS.
ENGINEERING TYPICAL DETAILS – HAMBRO MD2000 ON GIRDER

DETAIL 67
JOIST BEARING
ON GIRDER

T+17/8" (48 mm) = TOTAL SLAB THICKNESS + DECK THICKNESS + TOP CHORD THICKNESS + SHOE THICKNESS

DETAIL 68
JOIST BEARING
ON GIRDER

T+17/8" (48 mm) = TOTAL SLAB THICKNESS + DECK THICKNESS + TOP CHORD THICKNESS + SHOE THICKNESS

NOTE:
KNEE BRACING, IF REQUIRED, SEE ON DRAWING. SIZE TO BE DETERMINED.
DETAIL 69

BOLTED JOIST ON GIRDER

2 - 1/2" (M12) BOLTS ASTM A307

\[
\frac{3}{4}" \times 1/2" \text{ SLOTS @ 4/12}^2 \text{ (114 mm) c/c (HAMBRO SHOE)}
\]

\[
\frac{3}{16}" \text{ Ø HOLES @ 4/12}^2 \text{ (114 mm) c/c (SUPPORT) U.N.O.}
\]

2 - 3/8" (M10) BOLTS ASTM A325

\[
\frac{3}{8}" \times 1/2" \text{ SLOTS @ 5/12}^2 \text{ (140 mm) c/c (HAMBRO SHOE)}
\]

\[
\frac{3}{32}" \text{ Ø HOLES @ 5/12}^2 \text{ (140 mm) c/c (SUPPORT) U.N.O.}
\]

WHEN DEEP SHOE, THE c/c OF HOLE IS DIFFERENT, CONSULT THE APPROPRIATE DETAILS ON PLAN.

\[
T + 1/2" (48 mm) = \text{TOTAL SLAB THICKNESS} + \text{DECK THICKNESS} + \text{TOP CHORD THICKNESS} + \text{SHOE THICKNESS}
\]

DETAIL 70

JOIST PARALLEL TO A GIRDER WITHOUT SHEAR CONNECTORS

HILTI STEEL DECK FASTENERS:

- HSN24 FOR \(t < \frac{3}{16}" (3 mm) \)
- EPN19 FOR \(t > \frac{3}{16}" (6 mm) \)

\(t = \text{MINIMUM THICKNESS OF THE SUPPORTING STEEL} \)

#12 SELF TAPPING FASTENERS

\[
\frac{3}{16}" \text{ Ø HOLES @ 12" (305 mm) c/c}
\]

\[
\frac{3}{8}" (19 mm)
\]

\[
1/2" (19 mm)
\]

\[
1/2" (38 mm) \text{ MIN. (TYP.)}
\]

\[
T + 1/2" (48 mm) = \text{TOTAL SLAB THICKNESS} + \text{DECK THICKNESS} + \text{TOP CHORD THICKNESS} + \text{SHOE THICKNESS}
\]
DETAIL 71

JOIST PARALLEL TO A GIRDER WITH SHEAR CONNECTORS

HILTI STEEL DECK FASTENERS:
- HSN24 FOR $\frac{3}{8}''$ (3 mm) < t < $\frac{1}{2}''$ (10 mm)
- EPN19 FOR t > $\frac{1}{2}''$ (8 mm)

$T = \text{MINIMUM THICKNESS OF THE SUPPORTING STEEL}$

$T + \frac{17}{8}''$ (48 mm) = TOTAL SLAB THICKNESS + DECK THICKNESS + TOP CHORD THICKNESS + SHOE THICKNESS
ARCHITECTURAL TYPICAL DETAILS – HAMBRO MD2000 (MDH SERIES)

HAMBRO MD2000
TYPICAL FLOOR ASSEMBLY
- CONCRETE SLAB
- WELDED WIRE MESH 6" x 6" (152 x 152 mm)
- 1 1/8" (28.1 mm) 22 GAUGE STEEL DECK
- HAMBRO MD2000 STEEL JOISTS
- GALVANIZED STEEL FURRING CHANNEL 7/8" (22 mm)
- 25 GAUGE (5/32") (3.91 mm) CEILING
- 1/2" (12.7 mm) FIRE RATED FIBERGLASS PANEL

SECTION - TYPICAL FLOOR
Hambro MD2000 Composite Floor System

CONCRETE WALL (PERPENDICULAR)

CONCRETE WALL (PARALLEL)
LOAD BEARING STEEL STUD WALL
(PERPENDICULAR)

LOAD BEARING STEEL STUD WALL
(PARALLEL)
Hambro MD2000 Composite Floor System

- Pour Stop Angle
- Cavity filled with mineral wool insulation
- Joist shoe fastened to steel beam
- Galvanized steel studs
- Structural steel (perpendicular)

Wall composition per project specifications

Hambro MD2000 typical floor assembly

Steel beam

Extension for ceiling

Double top track with 1" (25.4 mm) deflection, cavity filled with mineral wool
Hambro MD2000 Composite Floor System

WALL COMPOSITION
PER PROJECT
SPECIFICATIONS

STEEL CLOSURE

POUR STOP ANGLE

STEEL DECK FASTENED TO STEEL BEAM

CAVITY FILLED WITH MINERAL WOOL INSULATION

GALVANIZED STEEL STUDS

HAMBRO MD2000 TYPICAL FLOOR ASSEMBLY

DOUBLE TOP TRACK WITH 1" (25.4 mm) DEFLECTION, CAVITY FILLED WITH MINERAL WOOL

STRUCTURAL STEEL
(PARALLEL)
Hambro MD2000 Composite Floor System

INSULATED CONCRETE FORMS WALL
(PERPENDICULAR)

INSULATED CONCRETE FORMS WALL
(PARALLEL)
LOAD BEARING MASONRY WALL
(PERPENDICULAR)

LOAD BEARING MASONRY WALL
(PARALLEL)
LOAD BEARING WOOD STUD WALL
(PERPENDICULAR)

LOAD BEARING WOOD STUD WALL
(PARALLEL)
PRODUCT INFORMATION AND BENEFITS

A Hambro composite girder is a primary structural component supporting joists in simple span conditions or other secondary elements such as steel beams and other Hambro composite girder.

It is often used in transfer slab system, designed by Canam. The Hambro transfer slab is composed of Hambro joists and girders in composite action with the concrete slab. The entire system is cambered to the specific loads applied. This particular system is ideal for use at underground parking levels and commercial spaces which have multiresidential complex on the upper floors. The girders support the loads from upper floors walls and then bear on columns and walls strategically placed to offer greater clearance length.

The Hambro transfer slab is an efficient and economical floor system since it is both fast and easy to install. It also requires less concrete and steel reinforcement than a reinforced concrete slab, thus reducing costs as well as construction time given the absence of shoring.

The girders are advantageous compared to conventional load bearing systems composed of beams with a W profile since:

1. The steel used in girders has a yield strength higher than steel used for shaped or welded beams: 55 ksi (380 MPa) versus 50 ksi (350 MPa).
2. We have better cost control for material purchases (angles) on the Canadian market compared to importing the beam sections.
3. The open web girders are lighter than the full web beams of the same depth.
4. The speed and ease of site erection improves jobsite coordination.
5. The girders can be used to facilitate the installation of ventilation ducts and plumbing as compared to a beam.
MAIN COMPONENTS

An open web Hambro composite girder is composed of a top chord and a bottom chord which are parallel to each other. These chords are held in place using vertical and diagonal web members. In conventional construction, a Hambro girder rests on a wall or a column and the bottom chord is held in place horizontally by a stabilizing plate.

The standard main components are:

1. Top and bottom chords: two angles back-to-back with a gap varying between 1 in. (25 mm) and 1 ⅜ in. (35 mm).
2. Diagonals: u-shaped channels or two angles back-to-back.
3. Verticals: u-shaped channels, boxed angles, plates or HSS.

Hambro composite girder is cambered in manufacturing. Once the concrete is poured, the Hambro girder becomes perfectly straight.

SHEAR CONNECTOR

1. “S” shape along the entire length of the Hambro girder.
2. End plate at each extremity which confine the concrete.
3. Hambro joist shoe that are fix to the Hambro girder top chord.
4. Additional connectors as U-channel or studs.

SPAN AND DEPTH

To select an economical depth in function of loads and spans, please contact a Canam sales representative.
JOIST DESIGN ESSENTIAL INFORMATION CHECKLIST

The following joist design information checklist was created to assist the building designer in the preparation of the design drawings. This list is a reminder. If other unspecified information therein affect the Hambro system, they also need to be communicated.

A. GENERAL INFORMATION

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1</td>
<td>Joist type</td>
</tr>
<tr>
<td>A.2</td>
<td>Joist depth</td>
</tr>
<tr>
<td>A.3</td>
<td>Clear span</td>
</tr>
<tr>
<td>A.4</td>
<td>Uniform loads (dead and live)</td>
</tr>
<tr>
<td>A.5</td>
<td>Slab thickness</td>
</tr>
</tbody>
</table>

B. LOADS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| B.1 | Additional uniform dead and live loads acting on the Hambro system:
- Show the area of various loading (examples: concrete pavers, corridors, etc.). |
| B.2 | Concentrated, distributed or unbalanced loads:
- Break down the content of the load and specify if it applies to top or bottom chord (examples: loads from bearing wall, medical lift, fire place, fall arrest at roof, etc.). |
| B.3 | Snow pile up loads:
- Show, using a diagram, maximum accumulation and distribution length on a lower roof or in an adjacent obstruction such as mechanical units, etc. |
| B.4 | Mechanical units and openings (stairs, elevator, mechanical openings, etc.):
- Specify the position, dimensions and load affecting the joist. |
| B.5 | Uplift from balcony:
- Specify the position, dimensions, load affecting the joist and the way it connects to the system. |

C. DESIGN CRITERIA

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| C.1 | Maximum allowable deflections under live load and total load:
- Specify deflections for special conditions (masonry, glass, etc.). |
| C.2 | Floor vibration criteria (if different from what is indicated in the general information of the technical manual):
- Type of partition, type of support, beta ratio or the minimum composite joist inertia. |
| C.3 | Duct opening passing through joists (if any):
- Specify dimensions, free opening and position. |
| C.4 | Minimal material thickness for corrosion resistance (if applicable). |
| C.5 | Positions of all holes in the slab (plumbing, ventilation, stairs, etc.):
- Specify positions and dimensions. |
| C.6 | ULC fire rating design number. Fire rated wall under Hambro slab:
- Specify position. |
| C.7 | Slab recess:
- Specify position and dimensions. |
| C.8 | Heating pipe
- Specify dimensions of pipes. |