STANDARD TEMPORARY BRIDGING AT END OF BAY TO PERIMETER JOIST

- PLYWOOD SHOULD BE TIGHT BETWEEN FLANGE HANGER (F.H.) AND THE FIRST JOIST OF THE BAY.
- BRIDGING SHOULD BE ALIGNED WITH JOIST BOTTOM CHORD ROLLBAR ROWS.
- THE ROLLBAR DOES NOT PROVIDE ANY LATERAL SUPPORT TO THE PERIMETER BEAM.
- STANDARD TEMPORARY BRIDGING AT END OF BAY WITHOUT SUPPORT-PERIMETER JOIST

- THE PERIMETER CHORD SHALL BE 3G 2x10 IN A STRAIGHT VERTICAL POSITION ALONG THE FUSE. IT IS THEN NECESSARY TO BRACE THE BOTTOM CHORD TO A SINGLE CLEVIS, EITHER ON THE FUSE BELOW OR ANY OTHER SUPPORT BRACED TO MATCH IT IN A STRAIGHT AND STRAIGHT POSITION.
- THE PERIMETER LATERAL SUPPORT CAN BE A CLEVIS OR ANY OTHER DEVICE TO KEEP THE JOIST IN A STRAIGHT AND STRAIGHT POSITION.
- TEMPORARY LATERAL SUPPORT MUST BE INSTALLED AT EACH BOTTOM CHORD ROW OF TEMPORARY BRIDGING.

STANDARD TEMPORARY BRIDGING AT END OF BAY TO CONCRETE WALL

- STANDARD TEMPORARY BRIDGING AT END OF BAY TO MASONRY WALLS

- STANDARD TEMPORARY BRIDGING AT END OF BAY TO STEEL WALL

- PLYWOOD SHOULD BE TIGHT BETWEEN FLANGE HANGER (F.H.) AND THE FIRST JOIST OF THE BAY.
- BRIDGING SHOULD BE ALIGNED WITH JOIST BOTTOM CHORD ROLLBAR ROWS.
- THE CONCRETE WALL MUST BE DESIGNED TO TAKE THE LATERAL FORCES FROM THE TEMPORARY BRIDGING SYSTEM (AS SPECIFIED BY THE CONSULTING ENGINEER).
- THE SOLID MASONRY WALL MUST BE DESIGNED TO TAKE THE LATERAL FORCES FROM THE TEMPORARY BRIDGING SYSTEM (AS SPECIFIED BY THE CONSULTING ENGINEER).
- THE WOOD WALL MUST BE DESIGNED TO TAKE THE LATERAL FORCES FROM THE TEMPORARY BRIDGING SYSTEM (AS SPECIFIED BY THE CONSULTING ENGINEER).
- THE METAL STUD WALL MUST BE DESIGNED TO TAKE THE LATERAL FORCES FROM THE TEMPORARY BRIDGING SYSTEM (AS SPECIFIED BY THE CONSULTING ENGINEER).

STANDARD TEMPORARY BRIDGING AT END OF BAY TO INSULATED CONCRETE WALLS

- STANDARD TEMPORARY BRIDGING AT END OF BAY TO WOOD WALL

- PLYWOOD SHOULD BE TIGHT BETWEEN FLANGE HANGER (F.H.) AND THE FIRST JOIST OF THE BAY.
- BRIDGING SHOULD BE ALIGNED WITH JOIST BOTTOM CHORD ROLLBAR ROWS.
- THE INSULATED CONCRETE WALL MUST BE DESIGNED TO TAKE THE LATERAL FORCES FROM THE TEMPORARY BRIDGING SYSTEM (AS SPECIFIED BY THE CONSULTING ENGINEER).
- THE WOOD WALL MUST BE DESIGNED TO TAKE THE LATERAL FORCES FROM THE TEMPORARY BRIDGING SYSTEM (AS SPECIFIED BY THE CONSULTING ENGINEER).
- THE METAL STUD WALL MUST BE DESIGNED TO TAKE THE LATERAL FORCES FROM THE TEMPORARY BRIDGING SYSTEM (AS SPECIFIED BY THE CONSULTING ENGINEER).

STANDARD TEMPORARY BRIDGING AT END OF BAY TO GIRDERS

- STANDARD TEMPORARY WOOD BRIDGING BETWEEN TWO JOIST

- STANDARD TEMPORARY BRIDGING AT END OF BAY TO TEFLON WALLS

- PLYWOOD SHOULD BE TIGHT BETWEEN FLANGE HANGER (F.H.) AND THE FIRST JOIST OF THE BAY.
- BRIDGING SHOULD BE ALIGNED WITH JOIST BOTTOM CHORD ROLLBAR ROWS.
- STANDARD WOOD BRIDGING BETWEEN TWO JOIST

- STANDARD TEMPORARY BRIDGING AT END OF BAY TO METAL STUD WALLE

- PLYWOOD SHOULD BE TIGHT BETWEEN FLANGE HANGER (F.H.) AND THE FIRST JOIST OF THE BAY.
- BRIDGING SHOULD BE ALIGNED WITH JOIST BOTTOM CHORD ROLLBAR ROWS.
- THE METAL STUD WALL MUST BE DESIGNED TO TAKE THE LATERAL FORCES FROM THE TEMPORARY BRIDGING SYSTEM (AS SPECIFIED BY THE CONSULTING ENGINEER).
- THE WOOD WALL MUST BE DESIGNED TO TAKE THE LATERAL FORCES FROM THE TEMPORARY BRIDGING SYSTEM (AS SPECIFIED BY THE CONSULTING ENGINEER).
- THE METAL STUD WALL MUST BE DESIGNED TO TAKE THE LATERAL FORCES FROM THE TEMPORARY BRIDGING SYSTEM (AS SPECIFIED BY THE CONSULTING ENGINEER).

STANDARD TEMPORARY BRIDGING AT END OF BAY TO TELESCOPIC ROLLBAR

- PLYWOOD SHOULD BE TIGHT BETWEEN FLANGE HANGER (F.H.) AND THE FIRST JOIST OF THE BAY.
- BRIDGING SHOULD BE ALIGNED WITH JOIST BOTTOM CHORD ROLLBAR ROWS.
- THE TELESCOPIC ROLLBAR MUST BE DESIGNED TO TAKE THE LATERAL FORCES FROM THE TEMPORARY BRIDGING SYSTEM (AS SPECIFIED BY THE CONSULTING ENGINEER).
- THE SOLID MASONRY WALL MUST BE DESIGNED TO TAKE THE LATERAL FORCES FROM THE TEMPORARY BRIDGING SYSTEM (AS SPECIFIED BY THE CONSULTING ENGINEER).
- THE WOOD WALL MUST BE DESIGNED TO TAKE THE LATERAL FORCES FROM THE TEMPORARY BRIDGING SYSTEM (AS SPECIFIED BY THE CONSULTING ENGINEER).
- THE METAL STUD WALL MUST BE DESIGNED TO TAKE THE LATERAL FORCES FROM THE TEMPORARY BRIDGING SYSTEM (AS SPECIFIED BY THE CONSULTING ENGINEER).

STANDARD TEMPORARY BRIDGING AT END OF BAY TO STANDARD ROLLBAR

- PLYWOOD SHOULD BE TIGHT BETWEEN FLANGE HANGER (F.H.) AND THE FIRST JOIST OF THE BAY.
- BRIDGING SHOULD BE ALIGNED WITH JOIST BOTTOM CHORD ROLLBAR ROWS.
- THE STANDARD ROLLBAR MUST BE DESIGNED TO TAKE THE LATERAL FORCES FROM THE TEMPORARY BRIDGING SYSTEM (AS SPECIFIED BY THE CONSULTING ENGINEER).
- THE SOLID MASONRY WALL MUST BE DESIGNED TO TAKE THE LATERAL FORCES FROM THE TEMPORARY BRIDGING SYSTEM (AS SPECIFIED BY THE CONSULTING ENGINEER).
- THE WOOD WALL MUST BE DESIGNED TO TAKE THE LATERAL FORCES FROM THE TEMPORARY BRIDGING SYSTEM (AS SPECIFIED BY THE CONSULTING ENGINEER).
- THE METAL STUD WALL MUST BE DESIGNED TO TAKE THE LATERAL FORCES FROM THE TEMPORARY BRIDGING SYSTEM (AS SPECIFIED BY THE CONSULTING ENGINEER).

STANDARD TEMPORARY BRIDGING AT END OF BAY TO NON-TELESCOPIC ROLLBAR

- PLYWOOD SHOULD BE TIGHT BETWEEN FLANGE HANGER (F.H.) AND THE FIRST JOIST OF THE BAY.
- BRIDGING SHOULD BE ALIGNED WITH JOIST BOTTOM CHORD ROLLBAR ROWS.
- THE NON-TELESCOPIC ROLLBAR MUST BE DESIGNED TO TAKE THE LATERAL FORCES FROM THE TEMPORARY BRIDGING SYSTEM (AS SPECIFIED BY THE CONSULTING ENGINEER).
- THE SOLID MASONRY WALL MUST BE DESIGNED TO TAKE THE LATERAL FORCES FROM THE TEMPORARY BRIDGING SYSTEM (AS SPECIFIED BY THE CONSULTING ENGINEER).
- THE WOOD WALL MUST BE DESIGNED TO TAKE THE LATERAL FORCES FROM THE TEMPORARY BRIDGING SYSTEM (AS SPECIFIED BY THE CONSULTING ENGINEER).
- THE METAL STUD WALL MUST BE DESIGNED TO TAKE THE LATERAL FORCES FROM THE TEMPORARY BRIDGING SYSTEM (AS SPECIFIED BY THE CONSULTING ENGINEER).

STANDARD TEMPORARY BRIDGING AT END OF BAY TO STANDARD WOOD ROLLBAR

- PLYWOOD SHOULD BE TIGHT BETWEEN FLANGE HANGER (F.H.) AND THE FIRST JOIST OF THE BAY.
- BRIDGING SHOULD BE ALIGNED WITH JOIST BOTTOM CHORD ROLLBAR ROWS.
- THE STANDARD WOOD ROLLBAR MUST BE DESIGNED TO TAKE THE LATERAL FORCES FROM THE TEMPORARY BRIDGING SYSTEM (AS SPECIFIED BY THE CONSULTING ENGINEER).
- THE SOLID MASONRY WALL MUST BE DESIGNED TO TAKE THE LATERAL FORCES FROM THE TEMPORARY BRIDGING SYSTEM (AS SPECIFIED BY THE CONSULTING ENGINEER).
- THE WOOD WALL MUST BE DESIGNED TO TAKE THE LATERAL FORCES FROM THE TEMPORARY BRIDGING SYSTEM (AS SPECIFIED BY THE CONSULTING ENGINEER).
- THE METAL STUD WALL MUST BE DESIGNED TO TAKE THE LATERAL FORCES FROM THE TEMPORARY BRIDGING SYSTEM (AS SPECIFIED BY THE CONSULTING ENGINEER).